

Engineering Security Into the Software Development
Life Cycle
The Build Security In Software Assurance Initiative promotes less
vulnerable software with security built in from the start.
by Gary M. McGraw and Nancy R. Mead

Creating a Software Assurance Body of Knowledge
This article presents an initiative to assemble the knowledge to
acquire, develop, and sustain secure software with functionality.
by Samuel T. Redwine Jr.

Designing for Disaster: Building Survivable Information
Systems
Designing survivability measures into an information system from
the start allows continued operations through failure scenarios.
by Ronda R. Henning

Sixteen Standards-Based Practices for Safety and
Security
The 16 practices presented in this article help establish a safety
and security capability, identify and manage risks, and assure
product safety and security throughout the life cycle.
by Dr. Linda Ibrahim

The Information Technology Security Arms Race
This author discusses how an intrusion prevention system can
fill the need for new technology defenses to protect against
new information attack technologies.
by Dr. Steven Hofmeyr

The MILS Architecture for a Secure Global Information
Grid
With the Multiple Independent Levels of Security safety
architecture, guards act to filter and enforce information flow,
allowing large systems to have partitions small enough to verify.
by Dr. W. Scott Harrison, Dr. Nadine Hanebutte, Dr. Paul W. Oman, and
Dr. Jim Alves-Foss

Application Security: Protecting the Soft Chewy Center
Application security is rising up to protect from the inside out
by implementing defensive techniques into top-level applications
and data.
by Alec Main

SoftwarSoftwaree SecuritySecurity

2 CROSSTALK The Journal of Defense Software Engineering October 2005

4

55

66

1111

1155

2200

2266

Cover Design by
Kent Bingham.

3
14
19

25

30
31

DeparDepar tmentstments

ON THE COVER

From the Sponsor

Coming Events

More Online From CrossTalk

Letters to the Editor
Call For Articles

Web Sites

BackTalk

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Joe Jarzombek

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the United States
Air Force (USAF) and the United States Department
of Homeland Security (DHS). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to
improve the reliability, sustainability, and responsive-
ness of our warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 24.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Additional art services
provided by Janna Jensen.
jensendesigns@aol.com

PPolicies,olicies, NeNews,ws, andand UpdatesUpdates

From the Sponsor

Dependency on information technology places software assurance as a key element
of national security and homeland security. Vulnerable software is a risk to a

broad spectrum of business and mission operations, including everything from process
control systems to commercial application products that support and enable them.
Software enables and controls the nation’s critical infrastructure, and to ensure the
integrity of that infrastructure, the software must be reliable and secure. However,
informed consumers have growing concerns about software security, suppliers’ capa-

bilities to exercise a minimum level of responsible practice, and the scarcity of practitioners with
requisite competencies to build secure software. Security-enhanced processes and technologies
are required to build trust into software acquired and used by government and those who oper-
ate our nation’s critical infrastructure.

The Department of Homeland Security (DHS) Software Assurance Program is grounded in
the “National Strategy to Secure Cyberspace.” DHS began the Software Assurance Program as
a focal point to partner with the private sector, academia, and other government agencies to
improve software development and acquisition processes. Through public-private partnerships,
the Software Assurance Program framework shapes a comprehensive strategy that addresses
people, process, technology, and acquisition throughout the software life cycle. Our efforts seek
to shift the paradigm away from patch management and to achieve a broader ability to routine-
ly develop and deploy trustworthy software products. These efforts will contribute to the pro-
duction of higher quality, more secure software. The DHS Software Assurance Program is
designed to lead the development of practical guidance, review tools, and promote research and
development investment in cyber security. The overall goal is secure and reliable software sup-
porting mission requirements, enabling more resilient operations.

Through hosting and co-hosting various forums and workshops, we will continue to lever-
age collaborative efforts of public-private working groups. DHS initiatives such as the “Build
Security In” Web site and the “Software Assurance Common Body of Knowledge” will contin-
ue to evolve and provide practical guidance to software developers, architects, and educators on
how to improve the quality, reliability, and security of software. These two initiatives are dis-
cussed this month in Engineering Security Into the Software Development Life Cycle (see page 4) and
Creating a Software Assurance Body of Knowledge (see page 5).

DHS collaboration with standards organizations is focused on evolving standards to reflect
guidance for appropriate levels of responsible practice for software security. To be relevant in
today’s global economy that relies on outsourcing of software and information technology serv-
ices, models and standards that provide criteria to guide and appraise process improvement and
support international commerce must explicitly address security (see Sixteen Standards-Based
Practices for Safety and Security on page 11).

This DHS-sponsored issue of CrossTalk addresses the value of software security; I
hope you will take the time to read, understand, and apply the principles and techniques dis-
cussed in this month’s articles. I encourage you to discover more about our DHS Software
Assurance Program and learn more about proven security practices by visiting us at
<http://BuildSecurityIn.us-cert.gov> and join others in our expanding software assurance
community of practice.

Software Security: Shifting the Paradigm
From Patch Management

To Software Assurance

Joe Jarzombek, Project Management Professional (USAF Lt. Col., Retired)
Director for Software Assurance
National Cyber Security Division
Department of Homeland Security

October 2005 www.stsc.hill.af.mil 3

Policies, News, and Updates

4 CROSSTALK The Journal of Defense Software Engineering October 2005

Today’s large-scale, highly distributed, net-
worked systems improve the efficiency

and effectiveness of organizations by permit-
ting whole new levels of organizational inte-
gration. However, such integration is accom-
panied by elevated risks of intrusion and
compromise. Incorporating security and sur-
vivability capabilities into an organization’s
systems can mitigate these risks.

Typical software development life-cycle
models do not focus on creating secure sys-
tems, and fall short when the goal is to
develop systems with a high degree of
assurance [1]. If addressed at all, security
issues are often relegated to a separate
thread of project activity, with the result that
security is treated as an add-on property.
This isolation of security considerations
from primary system-development tasks
results in an unfortunate separation of con-
cerns. Security should be integrated and
treated on par with other system properties
to develop systems with required functional-
ity and performance that can also withstand
failures and compromises [2].

The Build Security In Software
Assurance Initiative
The Build Security In (BSI) Software
Assurance Initiative seeks to alter the way
that software is developed so that it is less
vulnerable to attack and security is built in
from the start. BSI is a project of the
Strategic Initiatives Branch of the National
Cyber Security Division (NCSD) of the
Department of Homeland Security (DHS).

The initiative includes a BSI content cat-
alog available on the U.S. Computer
Emergency Readiness Team Web site at
<http://BuildSecurityIn.us-cert.gov>. It is
intended for use by software developers and
software development organizations who
want information and practical guidance on
how to produce secure and reliable software.
The catalog is based on the principle that
software security is fundamentally a software
engineering problem and must be addressed
in a systematic way throughout the software
development life cycle. The catalog either
contains or links to a broad range of infor-
mation about best practices, tools, guidelines,
rules, principles, and other knowledge to help
organizations build secure, reliable software.

Figure 1 identifies aspects of software
assurance that are covered in the catalog and
how the material has been organized. It cat-
egorizes catalog content according to best
practices, knowledge, and tools, and
includes business cases.

Best Practices
A significant portion of the BSI effort will
be devoted to best practices that can pro-
vide the biggest return considering current
best thinking, available technology, and
industry practice.

Knowledge
Recurring patterns of software defects lead-
ing to vulnerabilities have been identified,
and the BSI team is documenting detailed
instructions on how to produce software
without these defects under the headings
“Guidelines,” “Coding Practices,” and
“Coding Rules.”

Tools
The BSI site includes information about the
kinds of tools that can be used by both devel-
opers and security analysts to either detect or
remove common vulnerabilities.

Business Cases
Business cases help convince industry to
adopt secure software development best

practices and to educate consumers on the
need for software assurance. Each docu-
mented best practice addresses the business
case for use of that practice. An overall busi-
ness case framework will be included.

Future Plans
The DHS NCSD has invited representatives
from industry, academia, and government to
become involved. Part of this outreach
activity includes seminars at which invited
organizations can receive and share infor-
mation about software assurance resources
and help the stakeholder community under-
stand both the need for building security in
and the value of the Web site for providing
relevant guidance. Content will be linked
with reference sources and other materials
made available through the DHS NCSD
Software Assurance Program such as infor-
mation in “security-enhancing the applica-
tion software development life cycle” and
the software assurance common body of
knowledge, which provides a framework for
education and training curriculum develop-
ment in software assurance.u

References
1. Marmor-Squires, A.B., and P.A. Rougeau.

Issues in Process Models and Integrated
Environments for Trusted Systems De-
velopment. Proc. of the 11th National Com-
puter Security Conference. Fort George
G. Meade, MD, Oct. 17-20, 1988: 109-113.

2. Mead, N.R., et al. “Managing Software
Development for Survivable Systems.”
Annals of Software Engineering 2
(2001): 45-78.

Engineering Security Into the
Software Development Life Cycle

Nancy R. Mead
Software Engineering Institute

The Build Security In (BSI) initiative seeks to alter the way software is developed so that it is less vulnerable to attack when
security is built in from the start. BSI is part of the Software Assurance Program within the Strategic Initiatives Branch of the
National Cyber Security Division of the Department of Homeland Security. As part of the initiative, a BSI content catalog
is available on the U.S. Computer Emergency Readiness Team Web site. It is intended for use by software developers and soft-
ware development organizations who want information and practical guidance on how to produce secure and reliable software.

Point of Contact

Jan Philpot
Software Engineering Institute
4301 Wilson BLVD STE 200
Arlington,VA 22203
Phone: (703) 908-8208
Fax: (703) 908-9317
E-mail: philpot@sei.cmu.edu

 Figure 1: Components of the BSI Content Catalog

BEST PRACTICES

Risk Management

Project Management

Assembly, Integration,

 and Evolution

Architectural Risk Analysis

Threat Modeling

Measurement Code Analysis

Security Testing

Measurement

Incident Handling

 and Monitoring

Penetration Testing

White Box Testing

Deployment and Operations

KNOWLEDGE

Software Development

 Life Cycle

Business Relevance

Attack Patterns

Principles

Guidelines

Historical Risks

Coding Practices

Coding Rules

TOOLS

Modeling Tools

Code Analysis

Black Box Testing Tools

Figure 1: BSI Content Catalog Components

Gary M. McGraw
Cigital Inc.

October 2005 www.stsc.hill.af.mil 5

In 2003, the Department of Defense
(DoD) launched a software assurance

initiative. In 2004, the Department of
Homeland Security (DHS) joined in col-
laboration with DoD and other agencies
and established its own Software Assur-
ance Program1, and DoD and DHS began
to jointly sponsor semiannual software
assurance forums.

While the term software assurance poten-
tially encompasses assuring any property
or functionality of software, the initiative
encompasses safety and security and inte-
grates practices from a number of disci-
plines (see Figure 1). Initially, the effort
has concentrated on achieving and assur-
ing security properties and functionality.
This includes not only activities during
development, but also the acquisition and
sustainment processes.

This is driven by a growing demand
for low-defect, secure software for crucial
roles in defense and commerce often per-
formed by commercial off-the-shelf prod-
ucts. However, current commonplace
software specification, design, implemen-
tation, and testing practices provide users
with software containing numerous
defects and security vulnerabilities. Hence,
the initiatives’ Workforce Education and
Training Working Group is currently
addressing achievement of adequate U.S.
education and training on software securi-
ty, including training within government
and industry, and curriculum needs within
universities, colleges, and trade schools.

Defining Software Assurance
Common Body of Knowledge
After deliberation, the working group
decided to first create a description of the
additional needed knowledge – beyond
that required for normal software – to
acquire, develop, and sustain secure soft-
ware, including assurance of its security
properties and functionality. The working
group first identified the activities or
aspects of activities relevant to secure
software – beyond normal activities – and
then asked, “What knowledge is needed to
perform these activities?” Three difficult

sub-questions exist:
1. What are the normal activities and

their normal aspects?
2. What are the additional activities or

aspects of activities that are relevant?
3. What knowledge is needed to perform

these added activities?
Initially, the subgroup addressing soft-

ware development has taken the Software
Engineering Body of Knowledge Guide
[1] as a working description of what is the
normal knowledge.

The efforts to answer the second ques-
tion benefit from a number of prior
efforts, including the following:
• National Cyber Security Partnership

Task Force report on “Processes to
Produce Secure Software” [2].

• Safety and Security Extensions for In-
tegrated Capability Maturity Models [3].

• National Institute of Standards and
Technology Information System Se-
curity Project.

The working group also benefits from the
expertise of its members and the work of
other working groups and reviewers.

Some key knowledge not widely
known even though associated with nor-
mal activities may be included. The intent
is to ensure adequate coverage of requi-
site knowledge areas to enable profession-
als playing a number of roles in software
engineering, systems engineering, and
program management to identify knowl-
edge and acquire competencies associated
with software assurance. Because of this
wide coverage and applicability, the
intended product is officially called the
“Software Assurance Common Body of
Knowledge.”

After several rounds of internal and
external review, the initial report should
include an introduction followed by four
parts describing and identifying references
for the additional knowledge required:
1. Common concepts and principles

required across acquiring, developing,
and sustaining secure software.

2. Development.
3. Post-Release Sustainment.
4. Acquisition and Supply.

The Software Assurance Common

Body of Knowledge, initially released Oct.
3 at the DHS-DoD co-sponsored Soft-
ware Assurance Forum, will be updated
after public review and published in
December 2005.u

References
1. Institute of Electrical and Electronics

Engineers. Guide to the Software
Engineering Body of Knowledge. Eds.
P. Bourque and R. Dupuis. 2004 ed.
Los Alamitos, CA: IEEE, 16 Feb.
2004.

2. National Cyber Security Partnership.
Processes for Producing Secure
Software: Towards Secure Software.
Vols. I and II. Eds. S.T. Redwine Jr.
and N. Davis. Washington: National
Cyber Security Partnership, 2004.

3. Ibrahim, Linda, et al. Safety and
Security Extensions for Integrated Ca-
pability Maturity Models. Washington:
Federal Aviation Administration, Sept.
2004 <www.faa.gov/ipg>.

Note
1. See <http://BuildSecurityIn.us-cert.gov>

for information about the DHS Soft-
ware Assurance Program and related
products.

Creating a Software Assurance Body of Knowledge
Samuel T. Redwine Jr.
James Madison University

The Software Assurance Workforce Education and Training Working Group, composed of government, industry, and aca-
demic members, is currently taking a first step toward achieving adequate U.S. education and training on software assurance.
It is defining the additional body of knowledge needed to acquire, develop, and sustain secure software beyond that normally
required to produce and assure software where safety and security are not concerns.

Author Contact

Samuel T. Redwine Jr.
James Madison University
Computer Science MSC 4103
Harrisonburg, VA 22807
Phone: (540) 568-6305
E-mail: redwinst@jmu.edu

Information

Assurance

Software

Acquisition

Safety and

Security

Software

Assurance

Project

Management

Systems

Engineering

Software

Engineering

Figure 1: Disciplines Contributing to Software
Assurance

When a natural disaster strikes, a cor-
poration normally places a disaster

recovery plan into effect. These plans
define how a corporate knowledge base is
reconstituted after a catastrophic failure,
allowing an enterprise to continue its daily
functions. However, natural disasters are
relatively rare occurrences. A corporation
that leases space at a site hosting facility
and purchases disruption insurance has
allocated assets in advance, with potential-
ly no return on those investments if a dis-
aster does not occur [1]. In this regard,
disaster recovery is like insurance.

With the ubiquity of the Internet, it
has become more difficult to disrupt serv-
ices for an extended period of time.
Consumers expect 24-hour service or they
take their Internet shopping elsewhere.
Global enterprises now link what were
isolated data centers to Enterprise
Resource Planning systems to manage
inventory and track consumer preferences.
There is no downtime allowed in today’s
global economy.

Enter the concept of survivable informa-
tion systems. Survivable information sys-
tems continue operating in various failure
scenarios, although potentially in a
degraded mode. Problems such as denial
of service attacks, loss of a local network
segment, or loss of a single data center are
addressed by using various countermea-

sures or mechanisms to ensure continued
system operation. When a traditional
information system is subjected to failure
conditions, it shuts down. By contrast, a
survivable system continues functioning
in support of the enterprise.

This article begins with a discussion of
survivability, and contrasts survivability
with the traditional disaster recovery and
business continuity disciplines. A system
survivability design methodology is pre-
sented that incorporates risk assessment
and risk mitigation activities into the sys-
tem development life cycle. Finally, repre-
sentative examples of survivability mecha-
nisms within the context of service-ori-
ented system architectures are presented
to assist those designing survivable infor-
mation systems.

Survivability Defined
The Software Engineering Institute has
conducted a comprehensive project on sur-
vivable information systems [2].
Survivability has been defined as “the capa-
bility of a system to fulfill its mission, in a
timely manner, in the presence of attacks,
failures, or accidents.” A mission is a set of
high-level requirements that a system must
fulfill to be considered successful. An
organization may not have a mission state-
ment as such, but every organization has
some sort of vision that articulates the

organization’s ambitions.
For example, if an electronic commerce

server has an expectation of seven days a
week, 24 hours a day availability, an unre-
coverable disk crash that requires several
hours to restore would be considered a fail-
ure to fulfill the mission. A failure is a poten-
tially damaging event caused by a deficiency
in the system or in an external element on
which the system depends. An accident is
defined as a randomly occurring and poten-
tially damaging event such as a natural dis-
aster that is thought of as externally gener-
ated. An attack is a potentially damaging
event caused by an intelligent adversary.

What matters in the context of surviv-
ability is not so much the cause of a prob-
lem, but the system’s response to that
problem. To continue functioning, a sys-
tem must respond to a failure, accident, or
attack before the cause can be determined.
That is, the system must react to the event,
recover from it, and continue its mission.
A classic example of a survivable system
would be HAL, the all-knowing informa-
tion system from “2001: A Space
Odyssey” [3]. HAL reacted to attempted
shut-down operations by protecting itself
at the unfortunate expense of the
Discovery’s crew.

Hardy [4] categorizes events into four
quadrants, see Figure 1. Survivable sys-
tems address the events that occur in all
four quadrants. Events are categorized as
either controllable or beyond the control
of the system (uncontrollable), and pre-
dictable or unpredictable. Events that are
predictable and controllable can be sched-
uled, or monitored and addressed before
they become crisis. Unpredictable but
controllable events can be addressed with-
in the context of an incident response
team such as those used to control mali-
cious code attacks [5]. In a given situation,
a survivable system reacts to all types of
events and continues operation to fulfill
its mission.

In Swanson [6], the notion of disaster

Designing for Disaster:
Building Survivable Information Systems

Ronda R. Henning
Harris Corporation

Disaster recovery is a topic traditionally relegated to the operations staff as a mandatory function. Visions of natural disas-
ters and terrorist acts keep information technology managers awake at night planning how to maintain normal business com-
puting resources. But disasters can be as minimal as a broken water pipe, or an end-user who inadvertently unleashes an
Internet worm within the enterprise. This article presents an alternative approach: designing survivability measures into an
information system from the start. A discussion of survivability is presented, a methodology for survivable system design is
defined, and an illustrative example is presented.

6 CROSSTALK The Journal of Defense Software Engineering October 2005

Predictable Unpredictable

Controllable

Uncontrollable

• Develop standard

operating procedures

• Develop predictive

models

• Use indicators for

avoidance

• Quick Response Team

• Event Drills

• Capture lessons learned

• Contingency planning

Figure 1: Survivability Versus Disaster Recovery Event Categories

Software Security

October 2005 www.stsc.hill.af.mil 7

recovery is presented within the context
of a major, catastrophic system failure
that is caused by an external event and
denies access to a normally used facility
for an extended period of time. An exam-
ple would be a hurricane or 100-year flood
that decimates a building and the power,
water, and transportation infrastructure
required for support personnel. The goal
of a disaster recovery plan is to allow
resumption of operations as quickly as
possible, often at an alternate site.

In Hardy’s quadrant model, events that
are unpredictable and uncontrollable
cause activation of the disaster recovery
plan. The concept of survivability incor-
porates disaster recovery, but extends the
concept to include all events that may dis-
rupt system operations.

Survivability Versus
Continuity
Quirchmayr [7] and Nemzow [1] both dis-
tinguish the concept of continuity plan-
ning from the concept of disaster recov-
ery. These authors consider continuity
planning to involve the entire collection of
personnel, processes, and procedures that,
together with the computing assets, allow
a business to continue functioning. In
their respective models, the workflow
associated with a system is considered at
least as critical to an enterprise’s survival
as the actual hardware and software used
to support the personnel.

In these models, action plans incorpo-
rate personnel considerations for extend-
ed-term outages. For example, if an enter-
prise’s facility is without power, a continu-
ity model would not only address auxiliary
uninterruptible power supplies but also
address the logistics of maintaining the
fuel source, providing support to opera-
tions personnel, and providing alternate
communications paths to other locations
if necessary. Continuity planning inte-
grates the entire business process model
into the reaction and recovery tasks asso-
ciated with enterprise information system
operations.

The Goal of Survivability
Planning
In an optimal situation, an enterprise can
define an acceptable balance between the
potential risk of a failure that would render
a system unable to fulfill its mission and
the cost associated with protective mecha-
nisms. Bakry [8] proposes using economic
analysis to optimize the cost of prevention
versus risk of failure tradeoff, and the con-
cept of a balanced solution is introduced.

This model is illustrated in Figure 2.

For example, if an organization is
extremely risk adverse, it can expend con-
siderable assets on redundant computing
environments and an alternate support
staff. In contrast, an organization that
believes a catastrophe will never happen to
them might fulfill their plan with a pack-
age of writeable DVDs for media backup.
In this instance, the organization accepts
the risk of system loss in exchange for the
cost savings associated with survivable
safeguards

A Survivable Design
Development Methodology
To improve organizational integration,
information systems are becoming increas-
ingly networked to trading partners, cus-
tomers, and suppliers as well as other sites
on the corporate network. In this model,
islands of automation have been integrated
into a network-enabled enterprise benefit-
ing from their interconnectivity.
Unfortunately, there is a downside to this
model: A company may not have any
knowledge about a virus attack that is
spreading through a trading partner’s net-
work. In such an environment, a system
architected with some degree of survivabil-
ity such as firewalls, virus scanning, or
intrusion detection/prevention appliances
is most likely to fulfill its mission objectives.

How, then, does a system owner spec-
ify or design a system with survivability in
mind? There are no generally accepted
design methodologies in place to address
the diverse events that can impact system
survivability. Figure 3 illustrates a method-
ology that facilitates the integration of

survivability characteristics within a tradi-
tional information system development
framework.

Gathering Survivability
Related Requirements
To completely understand the survivability
characteristics of an information system, it
is essential to understand the system’s
requirements. In the language of system
specification, survivability attributes are usu-
ally expressed in terms of specialty engi-
neering disciplines and their requirements.
These disciplines include availability, reliabil-
ity, maintainability, and accountability as well
as security and integrity – in Figure 3 they
are collected as the ility requirements. Table
1 (see page 8) illustrates representative
requirements in each of these disciplines
that would impact the survivability charac-
teristics of system architecture.

It is important to note that not all sur-
vivability constraints require technology-

High Risk/
Low Cost

Low Risk/
High Cost

Balance
(Risk = Cost)

C
o

st

Risk of Loss

Figure 2: Risk of Loss Versus Cost of
Survivable Safeguard

Gather all ility
Specification
Requirements

Determine
Critical Elements

of System

Perform Risk
Assessment

Determine
Cost Effective

Countermeasures

Deploy and
maintain
system

Defines survivability requirement

Defines what components are important

Probability of attack

Procedures

Products
Personnel

Has the risk posture changed?

New
Vulnerabilities

New
Technology

Evaluate

A
ss

es
s

im
pa

ct
to

 c
rit

ic
al

 e
le

m
en

ts

Includes maintainability,
availability, reliability, etc.

Figure 3: Survivability Integration Methodology

Designing for Disaster: Building Survivable Information Systems

based solutions. For example, racks con-
taining computer hardware may be sealed
with colored tape. If the seal is broken,
maintenance personnel would inventory
the components and, if necessary, run
system diagnostics to detect potential sys-
tem modifications. Similarly, if unautho-
rized access to a facility is a concern, a
physical security policy that visitors must
be escorted at all times provides an
acceptable solution.

Determine Critical System
Elements
From the survivability analysis, critical
system elements should be identifiable.
Criticality of elements may be based on
connectivity requirements, processing
capacity, or amount of data accessed. The
objective of this process is to determine
those elements of the system design
whose failure or compromise would have
the greatest impact on the operational sys-
tem. From this decomposition, it is possi-
ble to determine which system compo-
nents will require added care going for-
ward in the development process.

Perform Risk Analysis
At this point, a risk analysis is required.
This is not the traditional risk analysis that
addresses risk to cost and schedule, but is
a risk analysis that assesses the potential
impact to the survivability posture of the
system. Once the critical elements have

been identified, the potential impact of
adverse events must be evaluated. Figure
4, adopted from Panko’s discussion [9],
illustrates the traditional risk assessment
process. In risk assessment, the potential
threats to the system are enumerated.
These threats are then evaluated in the
context of system vulnerabilities. That is,
a threat to a critical system element is only
a threat if the opportunity to exploit a
given vulnerability or group of vulnerabil-
ities is present. Whitson [10] presents a
basic overview of risk assessment.

Beyond determining the vulnerabili-
ties, there is the cost associated with
exploitation. For example, a risk of data
tampering when information is only valid
for less than a minute may carry a prohib-
itively high cost of exploitation. The cost
of launching an attack coupled with the
risk determines the threat severity. If
information is updated every minute, an
attacker would have to maintain an alter-
nate data set of sufficient size to hide his
intent until the attack is over. In such a
case, the perceived cost of the attack
would be relatively high, and the risk of
detecting fraudulent data would also be
relatively high. In such an instant, the
threat severity, or consequences, if an
attack was launched would be high for the
simple fact that a deliberate, concerted
attacker would be involved. When threat
severity is evaluated in the context of
countermeasures, the residual risk associ-
ated with system use is derived.

For example, a system that connects to
the Internet may have a relatively high risk
and a high threat severity. However, using
a packet filtering firewall, a minimal set of
network services required for the applica-
tion, and hardened or security-conscious
host configurations mitigate a consider-
able amount of risk. Risk to such a system
could be further mitigated by using anti-
virus software and/or intrusion preven-
tion technology.

The relative costs of architectural ele-
ments are significant inputs to the risk
assessment process and impact the risk
calculation. It should also be noted that

some countermeasures may not be intu-
itively obvious. Creativity and innovation
sometimes result in effective solutions for
a given enterprise environment.

Countermeasures should also be cost-
effective. Not all countermeasures are
electronic and computer-intensive. Count-
ermeasures can include standard operat-
ing procedures and policies. For example,
if unauthorized facility access is a high-
risk item, a cost-effective countermeasure
could be limiting computer room access
to authorized personnel by applying
access limiting devices (i.e., locks with
keys or smart cards). A guard dog turned
loose at night can be just as effective as a
sophisticated electronic alarm system.

Deploy and Maintain System
Once the countermeasures have been
identified and deployed, the system must
be maintained in a survivable state. For
example, a system that depends upon anti-
virus software must have the latest mali-
cious code signature files downloaded
when available. Application updates, or
patches, must be tested for compatibility
with the application environment and
deployed across the enterprise. The best
countermeasures in the world do not
work if they are not maintained and
enforced.

As the system matures, it must be con-
tinuously evaluated. For example, all the
vulnerabilities associated with a given
commercial product may not be applica-
ble to a specific application of the system.
A system may not use a given network
service, so a patch deployment can be
deferred. A new, improved version of a
commercial off-the-shelf software com-
ponent may become available, providing
additional functionality without custom
software development. In both cases, the
relative risks associated with updating the
system’s architecture must be weighed
against the potential risks that could be
introduced into the survivability posture.

Threats are continuously evolving as
new vulnerabilities and exploits are identi-
fied. The risk assessment activity is an
ongoing part of the system life cycle. The
residual risk associated with the system’s
survivability posture must be updated on
a regular basis to reflect the current sys-
tem architecture and the current threat
environment. A survivability assessment
that does not reflect the current state of
the system architecture is not a useful
document and may inaccurately reflect the
risk posture of the system.

Putting the Model to Work
The survivability model described above

Software Security

8 CROSSTALK The Journal of Defense Software Engineering October 2005

Table 1

Requirement families that impact system survivability.

Requirement
Family

Typical requirement statement Potential survivability impact

Availability
The system shall be available for
processing .9995 percent of the time.

Redundant hardware or dedicated
communications paths.

Reliability
The system shall have less than 1 hour
total downtime per year.

Hardware selection, or need for
distributed architecture.

Maintainability
The system components shall be field-
replaceable.

On-site replacement parts.

Integrity
The system shall protect information in
transit from possible modification.

Secure hash or cryptographic sealing
techniques.

Security
The system shall protect information at
rest, during processing, and in transit.

Virtual private network (VPN)
technology, disk encryption.

Table 1: Requirement Families That Impact System Survivability

List threats to
the system

List vulnerabilities
of the system

Risk =
probability of
vulnerability

being exploited

Cost of launching
attack

RiskX = Threat
severity

Threat
severity

_ Cost of mitigating
countermeasure(s) =

Acceptable
residual risk

Figure 4: Traditional Risk Assessment Process

October 2005 www.stsc.hill.af.mil 9

Designing for Disaster: Building Survivable Information Systems

has been applied to several architecture
development efforts, reflecting diverse
environments and their unique opera-
tional characteristics. This section discuss-
es how the model was applied to three
specific cases.

The first example is a high throughput
transaction-processing application. This
particular system development was a reno-
vation of an existing system that, while still
performing adequately, was rapidly
becoming unreliable. The fact that a data
warehouse hardware platform had
reached its end of life made moderniza-
tion imperative. On first investigation, a
high throughput distributed client-server
model might have served the purpose.
Unfortunately, data replication across the
environment could not be supported with
the desired reliability (five minutes of
downtime per year), and the system main-
tained highly confidential legal informa-
tion (criminal records). When the reliabili-
ty requirements were factored into the
equation, a high capacity centralized data
warehouse environment with internal
transaction process monitoring was a
more efficient architecture.

For the second example, a mission-crit-
ical networking infrastructure was under
consolidation and modernization. The
existing network evolved from a series of
stovepipe requirements, with each project
managing and ordering its own network
services. While this approach had served
the organization well in the past, it was no
longer cost effective or survivable in
today’s telecommunications environment.

A prioritization of services was under-
taken by the customer, moving the net-
work to a reliability-, maintainability-, and
availability-based service model. For
example, network services that required
redundant connectivity and minimal
downtime were segregated from tradition-
al administrative-based services that could
adapt to a next-business-day restoration.
The net result: the organization has been
able to reduce the number of redundant
communications paths between facilities,
reduce costs, and improve management
visibility into critical services. Spare com-
ponents are pre-positioned at strategically
placed depot installations instead of
stored at every site location.

The third example is a network infor-
mation resource, responsible for routing
user requests to the most probable source
of the requested information. In this
application, a user’s clearance level, band-
width, and intended use of the informa-
tion are factored into satisfying the user’s
query. The application in question has
applied distributed client/server architec-

ture used to localize the data storage to its
most logical requesters. For example,
Pacific Command analysts do not normal-
ly explore European data sets. Data has
been distributed to the most likely user
base with replicated backup services on
other servers.

A Service-Oriented Example
for the Future
Service-oriented architectures (SOAs)
decouple data from both the user and the
processing services in a layered structure.
The most critical data in a SOA may be the
processing required to fulfill a user request,
or it may be the data repository that con-
tains information vital to the enterprise’s
mission. Figure 5 illustrates a representa-
tive SOA with illustrative remediation tech-
niques that could be applied at each layer.

In most enterprises, the user interfaces

are assumed to execute on a standard
enterprise desktop system (i.e., Linux,
Windows, or Macintosh). Each enterprise
configures and manages their desktops dif-
ferently, depending on the information
technology budget and capabilities of the
end users. As a result, best practice desk-
top computing practices are usually
applied such as virus scanning and/or
patch management. Due to the multi-pur-
pose nature of user desktops, they are con-
sidered high risk for introducing potential
vulnerabilities into the enterprise. Backup
media are usually the responsibility of the
end user, unless the enterprise provides
global backup services.

The request services layer may repre-
sent a significant investment for the enter-
prise. This layer usually addresses pre- and
post-processing needed to make the data
meaningful to the user’s presentation envi-
ronment. For example, an application that
contains a corporate knowledge base or
expert system may represent irreplaceable
domain expertise. This type of application
can be applied as an analyst’s aid to filter
large data sets. In these cases, survivability
can be enhanced through using good soft-
ware development and maintenance prac-
tices, including configuration management
and code escrow.

The enterprise infrastructure is the
lifeblood of a services-based architecture.
Without the enterprise communication
services, data cannot be moved across the
layers of the processing architecture in
response to user requests. Because the
enterprise infrastructure is responsible for
both the availability of the information
and the integrity of the data in transit, it
represents a significant risk to the surviv-
ability posture of the enterprise. This is

User Interface

Request Services

Enterprise
Infrastructure

Data Repository
• Access Controls
• Replication
• Audit Logs
• Recovery Journals

• Firewalls
• Virtual Private Network
• Intrusion Detection Sensors
• Intrusion Prevention

• Access Controls
• Two-Factor

Authentication
• Patch Management
• Antivirus

• Access Controls
• Peer-to-Peer

• Configured Servers

• Software Inspections
• Coding Standards
• Patch Management

• Patch Management
• Anti-Virus
• Two-Factor Authentication

Service Layer Remediation Techniques

Centralized Administration
Personal Firewalls
Vulnerability Scanning

•
•
•

Authentication

Figure 5: Service-Oriented Architecture With Remediation Techniques

“Once the
countermeasures have

been identified and
deployed, the system

must be maintained in a
survivable state ...The

best countermeasures in
the world do not work if
they are not maintained

and enforced.”

the reason most modern enterprise infra-
structures are well protected. Mechanisms
employed at the infrastructure layer
include virtual private networks, intrusion
detection sensors, and firewalls. Each
enterprise determines the residual risk
associated with the infrastructure and
defines appropriate countermeasures as
required for the applications it supports.

The data repository may represent the
most critical portion of the application. It
could contain the corporation’s financial
records, business intelligence information,
or customer records. This information,
frequently gathered over extended periods
of time, may be the most irreplaceable in
an enterprise. As such, the data repository
is usually subject to layered data integrity
and defense mechanisms. These may
include replicating updates to alternate
geographically dispersed sites, using jour-
naling and recovery to ensure transactions
are saved to the database completely, and
using additional authentication techniques
for database restructuring. The repository
contains the data that allows the applica-
tions to perform their analytical or report-
ing functions, and is vital to the extended
life of the enterprise.

Conclusion
The countermeasures in the simple exam-
ple described above are representative of
the types of mechanisms that can be
deployed to enhance the survivability of
an information system. However, no coun-
termeasure should be deployed without
completion of a cost/benefit analysis.
There are times when a very elegant, 100
percent effective countermeasure is not
the best fit for an enterprise: when deploy-
ment would require major upgrades to
other portions of the information technol-
ogy environment, or substantively damage
the functionality of existing applications.
The objective is to make an enterprise
information system survivable, not inac-
cessible.

Survivability can be attained by aug-
menting the traditional system develop-
ment paradigms with a relatively small set
of process augmentations. The goal is cre-
ation of a risk-oriented model of the sys-
tem that allows the owner/creator to make
sound decisions about design alternatives
impacting the survivability of the system.
When such models are in place, they can
effectively enhance the survivability pos-
ture of the system. In such environments,
expenditures on major disaster recovery
plans can be greatly reduced because the

system has integrated reaction and recov-
ery capabilities.

Survivability as a design consideration
yields a more effective return on invest-
ment than expenditures for redundant
hardware, hot site backup, and major dis-
aster preparedness measures. The incorpo-
ration of survivability addresses all poten-
tial disaster scenarios, not just the most
catastrophic, resulting in a more prepared
organization that can react effectively to
multiple event scenarios, in effect creating
a more adaptable and agile system.u

Information Sources
For additional information on survivabili-
ty, the Software Engineering Institute at
<www.sei.cmu.edu> has ongoing projects
on survivable design, and runs the U.S.
Computer Emergency Response Team
(U.S.-CERT®) Coordination Center
<www.us-cert.gov>. For additional infor-
mation on contingency planning and disas-
ter recovery, the National Institute of
Standards and Technology hosts a
Computer Security Resource Clearing-
house at <www.csrc.nist.gov>. The clear-
inghouse includes a selection of template
documents for disaster recovery con-
tributed by various federal chief informa-
tion officers as best standard practices for
large enterprises.

References
1. Nemzow, M. “Business Continuity

Planning.” International Journal of
Network Management 7 (July 1997):
127-136.

2. Ellison, R.J., D.A. Fisher, R.C. Linger,
H.F. Lipson, T. Longstaff, and N.R.
Mead. “Survivable Network Systems:
An Emerging Discipline.” Pittsburgh,
PA: Software Engineering Institute,
1999: 1-3 <www.sei.cmu.org>.

3. Clarke, A.C. 2001: A Space Odyssey.
Reissue ed. New York: Roc, Sept.
2000.

4. Hardy, K. “Contingency Planning.”
Business Quarterly 56.4 (1992): 26-28.

5. Allen, J.H. The CERT Guide to
System and Network Security Prac-
tices. 1st ed. Upper Saddle River, NJ:
Addison-Wesley, 2001: 447.

6. Swanson, M., et al. Contingency
Planning Guide for Information
Technology Systems: Recommenda-
tions of the National Institute of
Standards and Technology. Diane Pub.
Co., May 2004 <www.nist.gov>.

7. Quirchmayr, G. Survivability and
Business Continuity Management.
Eds. P. Montague and C. Steketee.
Proc. of the Second Australasian
Information Security Workshop,

Dunedin, New Zealand, Jan. 2004.
8. Bakry, S.H. “Development of Security

Policies for Private Networks.” Inter-
national Journal of Network Manage-
ment 13 (2003): 203-120.

9. Panko, R.R. Corporate Computer and
Network Security. 1st ed. Upper
Saddle River, NJ: Pearson Education,
Inc., 2004.

10. Whitson, G. “Computer Security:
Theory, Process, and Management.”
Consortium for Computing Sciences
in Colleges 2003.

Software Security

10 CROSSTALK The Journal of Defense Software Engineering October 2005

About the Author

Ronda R. Henning is a
senior scientist in the
Government Communi-
cations Systems Division
at Harris Corporation,
an international commu-

nications company. She is the network
security manager for the Federal
Aviation Administration’s Telecommuni-
cation Infrastructure program, a $1.7 bil-
lion network modernization of the
National Air Space. Previously, she led
the Harris Information Assurance Center
of Excellence in defining security archi-
tectures for the National Crime Infor-
mation Center and the Eastern Test
Range Modernization Programs.
Henning also served as principal investi-
gator on the Network Vulnerability
Visualization Architecture program, and
the Integrated Design Environment for
Assurance program. Prior to this, she
worked in information security research
and development at the National Security
Agency. She is a Certified Information
Systems Security Professional and a
Certified Information Security Manager.
Henning has a Masters of Business
Administration from the Florida Institute
of Technology, a Master of Science in
computer science from Johns Hopkins
University, and a Bachelor of Arts from
the University of Pittsburgh.

Harris Corporation
Government Communications
Systems Division
MS F-11
1025 W NASA BLVD
Melbourne, FL 32919
Phone: (321) 309-2642
Fax: (321) 309-2590
E-mail: rhenning@harris.com® CERT is registered in the U.S. Patent and Trademark

Office by Carnegie Mellon University.

October 2005 www.stsc.hill.af.mil 11

Sixteen Standards-Based Practices
for Safety and Security

Dr. Linda Ibrahim
Federal Aviation Administration

This article presents 16 standards-based practices for safety and security. These practices were derived from four safety stan-
dards and four security standards and then harmonized to recognize the commonalities among the safety and security disci-
plines. Implementation of these practices should lead to establishing a safety and security capability, identifying and manag-
ing safety and security risks, and assuring that products and services are safe and secure throughout their life cycle.

Safety and security are critical properties
of products and services today. There

are many separate standards that pertain to
safety and to security covering, for exam-
ple, systems, software, management, and
engineering. There are also many underly-
ing process frameworks that help organi-
zations develop and improve their essential
management and engineering processes.
However, there has been a lack of align-
ment among both specialized standards
themselves and between those specialty
areas and underlying process frameworks
broadly used for process improvement. To
fill these gaps, the Safety and Security
Extensions Project was launched, co-spon-
sored by organizations within the Federal
Aviation Administration (FAA) and the
Department of Defense.

The Safety and Security Extensions
Project developed the essential practices
presented in this article. The safety and
security practices produced from this proj-
ect were required to be based on widely
recognized safety and security standards1
and harmonized across the safety and
security disciplines. After separate safety
practices and security practices were
derived capturing their respective source
standards, the practices were harmonized
to address commonalities, coordinate
activities, align terminology, and encour-
age the merger of the safety and security
disciplines. Additionally, the project pro-
vided a mechanism for implementing
these specialty-engineering practices in the
context of existing process improvement
frameworks to align safety and security
improvements with more general process
improvement endeavors.

The project team comprised more
than 30 experts from government and
industry in the United States and the inter-
national community. The resultant prac-
tices enjoyed multiple broad national and
international reviews over the two-year
project duration. The final report [1] fully
describes the project and the safety and
security practices. That report also pro-
vides guidance regarding using these safe-
ty and security practices with integrated
capability maturity models as underlying

process improvement frameworks.
The purpose of this article is to spread

awareness of these essential, integrated,
harmonized, standards-based practices
and to encourage their use in organiza-
tions concerned about safety and security.
Note that these practices are not software-
specific, but address a broader product
and service scope. These 16 practices will
form a basis for the emerging internation-
al standard, International Organization for
Standardization/International Electro-
technical Commission 15026 Systems and
Software Assurance.

The 16 standards-based practices for
safety and security are organized by goal
and summarized in Table 1, and then
briefly described in the next section.
Lastly, further information is provided
regarding using these practices.

The 16 Standards-Based
Practices for Safety and Security
Establishing a Safety and Security
Infrastructure

The first five practices help establish safety
and security capability and infrastructure.

Practice 1: Ensure safety and security
awareness, guidance, and competency.
Those who engage in different safety and
security activities need appropriate knowl-
edge and skills. This practice includes identi-
fying competency and awareness needs,
ensuring those needs are met, and retaining
records of qualifications and training. It
includes qualifications required to access,
use, and maintain a safe and secure work
environment. The practice applies to man-
agers, acquirers, developers, maintainers,
operators, and general staff.

Practice 2: Establish and maintain a
qualified work environment that
meets safety and security needs.
The work environment should address safe-
ty and security needs. This includes ensuring
that facilities, tools, and equipment are cali-
brated or otherwise qualified in accordance
with appropriate standards. New technology

Establishing a Safety and Security Infrastructure
1. Ensure Safety and Security Competency
2. Establish Qualified Work Environment
3. Ensure Integrity of Safety and Security Information
4. Monitor Operations and Report Incidents
5. Ensure Business Continuity

Managing Safety and Security Risks
6. Identify Safety and Security Risks
7. Analyze and Prioritize Risks
8. Determine, Implement, and Monitor Risk Mitigation Plan

Satisfying Safety and Security Requirements
9. Determine Regulatory Requirements, Laws, and Standards
10. Develop and Deploy Safe and Secure Products and Services
11. Objectively Evaluate Products
12. Establish Safety and Security Assurance Arguments

Managing Activities and Products
13. Establish Independent Safety and Security Reporting
14. Establish a Safety and Security Plan
15. Select and Manage Suppliers, Products, and Services
16. Monitor and Control Activities and Products

Application Practice 3 -
Ensure Integrity of Safety and Security Information

Identify required safety and security information and maintain storage, protection, and
access and distribution control for it.

Description: Identify required safety and security document and information. Manage
and control required information, including documentation, data, and asssurance
evidence to ensure its integrity. Ensure that artifacts related to safety and security
assurance monitoring and evaluation are suitably protected and distributed to
authorized stakeholders.

Implementing Practices: This application practice is implemented by performing the
following practices in such a way as to identify required safety and security information
and maintain storage, protection, and access and distribution control for it.

Process Area 17 Information Management (from iCMM)

Best Practice 17.01 Establish and maintain a strategy and requirements for
 information management.
Best Practice 17.02 Establish an infrastructure for information management,
 including repository, tools, equipment, and procedures.
Best Practice 17.03 Collect, receive, and store information according to
 established strategy and procedures.
Best Practice 17.04 Disseminate or provide timely access to information to
 those who need it.
Best Practice 17.05 Protect information from loss, damage, or unwarranted
 access.
Best Practice 17.06 Establish requirements and standards for content and
 format of selected information items.

Table 1: The 16 Standards-Based Practices for Safety and Security (titles only)

12 CROSSTALK The Journal of Defense Software Engineering October 2005

should be provided when necessary to
improve the work environment.

Practice 3: Identify required safety
and security information and maintain
storage, protection, and access and
distribution control for it.
This practice ensures that a capability exists
for retaining and protecting required safety
and security information. Access is con-
trolled, and information is distributed or
made available to authorized stakeholders
when needed.

Practice 4: Monitor operations and
environmental changes, report and
analyze safety and security incidents and
anomalies, and initiate corrective actions.
The operational environment is monitored,
including changes in threats, hazards, vul-
nerabilities, impacts, and risks. Safety and
security incidents and anomalies are detect-
ed, collected, reported, analyzed, and
retained to assist future analyses. Analysis
may lead to initiating corrective or preven-
tive actions, risk mitigation actions, further
investigation, or other actions.

Practice 5: Establish and maintain plans to
ensure continuity of business processes
and protection of assets.
This practice includes identifying and
assessing risks to business continuity, and
establishing plans to protect the business
and to counteract potential business disrup-
tions from adverse conditions, failures, and
threats. Business continuity plans are tested
to ensure they are up to date and effective.

Managing Safety and Security Risks
These three practices pertain to identifying
and managing safety and security risks.

Practice 6: Identify risks and sources of
risks attributable to vulnerabilities,
security threats, and safety hazards.
This practice includes identification of secu-
rity threats or safety hazards, and vulnerabil-
ities, faults, and failures that could be exer-
cised or exploited. Risk sources may be nat-
ural or man-made, both accidental and
deliberate.

Practice 7: For each risk associated
with safety or security, determine the
causal factors, estimate the consequence
and likelihood of an occurrence, and
determine relative priority.
Causal factors for threats or hazards may
include hardware, software, human and
environmental factors. The severity and like-
lihood of an occurrence are assessed and
combined to obtain an estimate of risk for
each threat or hazard. The practice also

addresses prioritization of these risks.

Practice 8: Determine, implement, and
monitor the risk mitigation plan to
achieve an acceptable level of risk.
This practice pertains to determining con-
trols or countermeasures to reduce risks to
an acceptable level. A risk mitigation plan
documents the approach and activities to
ensure safety and security criteria are met,
and these essential risk mitigations become
included as product or service requirements.
Risk mitigation plans are implemented and
monitored and corrective actions taken as
required to control safety and security risks.

Satisfying Safety and Security
Requirements
The next four practices focus on determin-
ing safety and security requirements, and
ensuring they are met throughout the life
cycle.

Practice 9: Determine applicable
regulatory requirements, laws,
standards, and policies and define
levels of safety and security.
This practice addresses the determination of
applicable safety and security laws, man-
dates, regulatory requirements, external poli-
cies, and standards. It includes establishing
internal policy regarding safety and security,
defining criteria for determining safety and
security levels2, and denoting methods, tech-
niques, rules, and tools required for each
level.

Practice 10: Develop and deploy
products and services that meet safety
and security needs and requirements, and
operate and dispose of them safely and
securely.
Starting from the determination of safety
and security requirements and levels, this
practice guides all life-cycle activities to
ensure products and services are designed,
developed, transitioned, deployed, operated,
maintained, and disposed of to address
established safety and security needs and
requirements.

Practice 11: Objectively evaluate products
and services to ensure safety and security
requirements are achieved and products
and services fulfill their intended use.
This practice addresses verification, assess-
ment, and audit throughout the life cycle to
determine whether products and services
meet safety and security requirements. It also
addresses validation to determine fulfillment
of intended use. Evaluation activities are
performed at an appropriate level of rigor as
determined by required safety and security
levels, and evaluation evidence is collected to

support safety and security claims.

Practice 12: Establish and maintain
safety and security assurance arguments
and supporting evidence throughout the
life cycle.
To demonstrate that safety and security
assurance needs have been satisfied, it is
essential to retain documentation that pro-
vides an argument for the safety and securi-
ty of a product or service. This argument,
with supporting evidence, is built, collected,
and retained throughout the life cycle.

Managing Activities and Products
The last four practices address safety and
security management so that safety and
security activities and products are planned,
tracked, measured, monitored, and
improved.

Practice 13: Establish and maintain
independent reporting of safety and
security status and issues.
Reporting safety and security status and
issues should reflect the degree of inde-
pendence appropriate to the needed level of
safety and security associated with the prod-
uct or service. Staff members and external
organizations need to be informed about
both reporting channels and notification
mechanisms.

Practice 14: Establish and maintain
a plan to achieve safety and security
requirements and objectives.
This practice involves establishing the plan,
establishing commitment to the plan, and
coordinating and communicating plans, sta-
tus, and direction to participants and stake-
holders.

Practice 15: Select and manage
suppliers, products, and services using
safety and security criteria.
This practice addresses the capability of
suppliers to meet safety and security needs.
Appropriate criteria are used in supplier
selection, and suppliers are required to deliv-
er safety and security assurance with sup-
plied products and services, including off-
the-shelf products.

Practice 16: Measure, monitor, and
review safety and security activities
against plans, control products, take
corrective action, and improve processes
throughout the life cycle.
This last practice broadly encompasses sev-
eral process and product control and mon-
itoring activities. It includes measuring,
monitoring, and reviewing activities against
plans; assuring that changes to require-
ments, products, plans, and procedures do

Software Security

October 2005 www.stsc.hill.af.mil 13

Sixteen Standards-Based Practices for Safety and Security

not adversely affect safety and security; tak-
ing corrective action to address any safety
and security problems or issues; and
improving safety and security processes
throughout the life cycle.

Applying the Practices
Organizational Context
Whatever your organizational perspective,
these practices are useful if you are con-
cerned about safety and security. The prac-
tices address safety and security in several
contexts, including strategically, to support
enterprise-wide safety and security work; at
a program-level, for any program or organ-
ization that deals with safety and security of
products and services across the life cycle;
in the work environment, for ensuring peo-
ple have tools and facilities needed for safe
and secure development, operation, main-
tenance, and support of products and serv-
ices; and by acquisition programs, for eval-
uating the capability of suppliers to deliver
safe and secure products and services.

Although the practices are harmonized,
they can be implemented in the context
chosen by the organization, which may be
security only, or safety only, or both safety
and security.

Process Improvement Context
The safety and security standards-based
practices described above were developed
to be used with respect to two integrated
capability maturity models, the FAA inte-
grated Capability Maturity Model (iCMM)
[2] and Capability Maturity Model
Integration (CMMI®) [3] and their respec-
tive appraisal methods. The architectural
mechanism for realizing this alignment is
called an application area. This construct was
devised to ensure visibility, improvability,
and appraisability of the safety and securi-
ty practices, to facilitate their selective use,
and to utilize the depth of existing frame-
work practices for implementing safety and
security without disrupting the underlying
process frameworks already in use.

An application area groups together
related standards-based application practices
considered essential for achieving requisite
outcomes particular to the application/dis-
cipline. In the case of the safety and secu-
rity application area, the 16 practices pre-
sented in this article are denoted application
practices. Application practices are carried
out with associated guidance from the
source standards for the application (i.e.,
the harmonized guidance from the eight
source standards for safety and security
that is provided for each practice in [1]).

However, to align the specialized safety

and security practices with the essential and
more general practices in the iCMM and
CMMI, each application practice is further
supported by implementing practices. These
are particular practices in the CMMI and
iCMM reference models that are used to
implement application practices, when
interpreted by the safety and security con-
text information associated with each
application practice.

For example, to implement applica-
tion practice No. 1 Ensure Safety and
Security Competency, implementing prac-
tices are from the training process areas
in iCMM (PA 22 Training) and CMMI
(Organizational Training); those practices
would be carried out with particular
focus on ensuring safety and security
competency.

Thus an application area is structured
to include the following: purpose, required
goals/outcomes (application goals), expec-
ted practices (application practices), and for
each application practice: description, typi-
cal work products, notes, and a list of par-
ticular implementing practices from the refer-
ence models. The generic practices of
CMMI or iCMM apply to an application
area so capability levels can be determined
by appraisal methods associated with these
reference models.

The excerpt in Figure 1 illustrates, for
Practice 3 described in the previous sec-
tion, how application practices and imple-
menting practices are presented.

The safety and security application area,
and the application area construct are fully
described in [1]. The application of these
safety and security practices in the context
of other standards and frameworks is addi-
tionally described in [4].

Summary
This article has presented 16 essential stan-
dards-based practices for safety and securi-
ty. It further illustrated how an organization
can align implementation and improve-
ment of these 16 practices using a more
general process improvement model. This
should lead to more efficiency and effec-
tiveness in process improvement efforts
for those organizations concerned about
safety and security.u

References
1. Ibrahim, L., et al. Safety and Security Ex-

tensions for Integrated Capability Ma-
turity Models. Washington: Federal Avi-
ation Administration, Sept. 2004 <www.
faa.gov/ipg>.

2. Ibrahim, L., et al. The Federal Aviation
Administration Integrated Capability
Maturity Model (FAA-iCMM). Vers. 2.0.
Washington: Federal Aviation Adminis-
tration, Sept. 2001 <www.faa.gov/ipg>.

3. CMMI Product Team. Capability Ma-
turity Model® Integration (CMMI ®),
Vers. 1.1 - CMMI for Systems Engi-
neering, Software Engineering, Inte-
grated Product and Process Develop-

Establishing a Safety and Security Infrastructure
1. Ensure Safety and Security Competency
2. Establish Qualified Work Environment
3. Ensure Integrity of Safety and Security Information
4. Monitor Operations and Report Incidents
5. Ensure Business Continuity

Managing Safety and Security Risks
6. Identify Safety and Security Risks
7. Analyze and Prioritize Risks
8. Determine, Implement, and Monitor Risk Mitigation Plan

Satisfying Safety and Security Requirements
9. Determine Regulatory Requirements, Laws, and Standards
10. Develop and Deploy Safe and Secure Products and Services
11. Objectively Evaluate Products
12. Establish Safety and Security Assurance Arguments

Managing Activities and Products
13. Establish Independent Safety and Security Reporting
14. Establish a Safety and Security Plan
15. Select and Manage Suppliers, Products, and Services
16. Monitor and Control Activities and Products

Application Practice 3 -
Ensure Integrity of Safety and Security Information

Identify required safety and security information and maintain storage, protection, and
access and distribution control for it.

Description: Identify required safety and security document and information. Manage
and control required information, including documentation, data, and asssurance
evidence to ensure its integrity. Ensure that artifacts related to safety and security
assurance monitoring and evaluation are suitably protected and distributed to
authorized stakeholders.

Implementing Practices: This application practice is implemented by performing the
following practices in such a way as to identify required safety and security information
and maintain storage, protection, and access and distribution control for it.

Process Area 17 Information Management (from iCMM)

Best Practice 17.01 Establish and maintain a strategy and requirements for
 information management.
Best Practice 17.02 Establish an infrastructure for information management,
 including repository, tools, equipment, and procedures.
Best Practice 17.03 Collect, receive, and store information according to
 established strategy and procedures.
Best Practice 17.04 Disseminate or provide timely access to information to
 those who need it.
Best Practice 17.05 Protect information from loss, damage, or unwarranted
 access.
Best Practice 17.06 Establish requirements and standards for content and
 format of selected information items.

Figure 1: Presentation of an Application Practice and Its Implementing Practices

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

14 CROSSTALK The Journal of Defense Software Engineering October 2005

Software Security

ment, and Supplier Sourcing (CMMI-
SE/SW/IPPD/SS, Vers. 1.1) Contin-
uous Representation. Pittsburgh, PA:
Software Engineering Institute, Mar.
2002 <www.sei.cmu.edu>.

4. Ibrahim, L., C. Wells, and R. Bate. Ex-
tending Systems Engineering Frame-
works for Special Application Areas:
Case Study Safety and Security. Proc. of
the 15th Annual International Sym-
posium of the International Council on
Systems Engineering, Rochester, N.Y.,
July 2005 <www.faa.gov/ipg>.

Notes
1. The safety and security practices are

derived from the following eight stan-
dards:
For Safety:
• MIL-STD-882C*. Military Standard

System Safety Program Require-
ments. U.S. Department of Defense,
Jan. 1993 <https://safety.army.mil/
pages/systemsafety>.

• MIL-STD-882D*. Standard Practice
for System Safety. U.S. Department
of Defense, Feb. 2000 <https://
safety.army.mil/pages/system
safety>.

• IEC 61508. Functional Safety of
Electrical/Electronic/Programma-
ble Electronic Safety-Related Sys-
tems. International Electrotechnical
Commission, 1997 <www.iec.ch/
61508>.

• DEF STAN 00-56. Defence Stan-
dard 00-56, Safety Management
Requirements for Defence Systems.
Ministry of Defence, United King-
dom, Dec. 1996. <www.dstan.
mod.uk> or <http://cms.brookes.
ac.uk/modules/other/58_DEF_ST
AN_00-56.pdf>.

* Although MIL-STD-882D super-
cedes MIL-STD-882C, the knowl-
edge in MIL-STD-882C was also
integrated into the 16 practices, as
proposed/endorsed by the safety
community. We found no inconsis-
tencies between the standards and
included them both.

For Security:
• ISO/IEC 17799:2000(E). Informa-

tion Technology – Code of Practice
for Information Security Manage-
ment. 1st ed. International Organi-
zation for Standardization, 1 Dec.
2000 <www.iso.ch>.

• ISO/IEC 15408. Common Criteria
for Information Technology Secur-
ity Evaluation, Part 3: Security
Assurance Requirements, Vers. 2.1.
Common Criteria Project Sponsor-
ing Organizations, 1999 <www.com

moncriteriaportal.org>.
• ISO/IEC 21827:2002. Systems Se-

curity Engineering Capability Ma-
turity Model. International Organi-
zation for Standardization. (Systems
Security Engineering Capability
Maturity Model, Model Description
Document Vers. 3.0, June 2003,
Systems Security Engineering Capa-
bility Maturity Model (SSE-CMM)
Project.) <www.sse-cmm.org> or
<www.iso.ch>.

• NIST 800-30. Risk Management
Guide for Information Technology
Systems. National Institute of Stan-
dards and Technology, Special Publi-
cation 800-30, 2001 <http://csrc.
nist.gov/publications/nistpubs/
800-30/sp800-30.pdf>.

The Safety and Security Extensions final
report [1] includes mappings of the safe-
ty and security practices to source prac-
tices/clauses, and demonstrates cover-
age of these eight source documents, at
an appropriate level of detail.

2. Each safety and security level denotes an
expression of trust or an acceptable
range of values of risk containment
associated with a product or service.

About the Author

Linda Ibrahim, Ph.D.,
is chief engineer for
Process Improvement at
the Federal Aviation
Administration (FAA).
She led development and

is lead author and architect of FAA-inte-
grated Capability Maturity Model Vers.
1.0 and Vers. 2.0, and its appraisal
method, and she co-managed the Safety
and Security Extensions project. Ibrahim
has worked in software engineering for
more than 30 years in the United States,
Europe, and Middle East, and is a mem-
ber of the Capability Maturity Model®

Integration Steering Group. Ibrahim has
a Bachelor of Arts in Mathematics, a
Master of Science in information sci-
ence, and a doctorate in electrical engi-
neering.

Federal Aviation Administration
800 Independence AVE SW
Washington, DC 20591
Phone: (202) 267-7443
Fax: (202) 267-5069
E-mail: linda.ibrahim@faa.gov

COMING EVENTS

November 6-9
6th Annual Amplifying Your

Effectiveness Conference
Phoenix, AZ

www.ayeconference.com

November 6-9
5th Working IEEE/IFIP Conference on

Software Architecture (WICSA)
Pittsburgh, PA

http://sunset.usc.edu/~softarch/
wicsa5

November 7-9
Airborne Early Warning

and Battle Management Conference
Washington D.C.

www.marcusevansbb.com/AEW

November 13-17
International Association for Computing

Machinery SIGAda 2005 Conference
Atlanta, GA

www.sigada.org/conf/sigada2005

November 14-18
STARWEST 2005

Anaheim, CA
www.sqe.com/starwest

November 14-18
5th Annual Capability Maturity Model®

Integration Technology Conference
and User Group

Denver, CO
www.sei.cmu.edu/cmmi/events/

cmmi-techconf.html

November 14-18
3rd International Conference on Software

Process Improvement (ICSPI) 2005
Orlando, FL

www.icspi.com

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

October 2005 www.stsc.hill.af.mil 15

Security for information technology
(IT) is subject to an ongoing arms race

between the attackers and the defenders.
As new IT systems are developed and
deployed, attackers find new weaknesses
in these systems and new ways of exploit-
ing the weaknesses. Defenders must keep
innovating to keep up with the attackers;
without ongoing innovation, IT systems
will become crippled by attacks.

New Attack Technologies
Recently, attackers have devised a set of
new tools to make it easier to attack sys-
tems and evade defenses. A good example
is a group of tools known as binary differs
that determine differences in binary code
[1]. Binary differs are typically used to
determine the difference between a
patched version of an application and an
unpatched version. This enables the
attacker to determine what vulnerability
was patched, and how.

Armed with this information, an
attacker can rapidly develop an exploit for
that vulnerability, often within a matter of
hours. Consequently, as soon as a new
patch is announced, an attacker can have
an exploit for that patched vulnerability
within a matter of hours. This is a prob-
lem because defenders can rarely, if ever,
patch that fast, even with automated
patch systems. Patches have to be tested
before being deployed and that can take
days, even weeks. With the advent of
binary differs, the defender will lose the
patching race every time. Patching is no
longer a viable defense strategy.

Another kind of tool is the automated
attack framework. With these frame-
works, an attacker with little or no techni-
cal expertise can easily launch a variety of
attacks. The best example is the free open
source tool Metasploit [2], which allows
an attacker to scan a system for vulnera-
bilities, and then gives the attacker the
choice of various attack modules to click
on to launch an attack. In addition to
choosing the type of attack, the attacker
also gets to choose the type of payload,

which can be any one of a variety of mali-
cious software (malware for short) such as
a Trojan horse or a root kit. Such auto-
mated attack frameworks make it very
easy for anyone to launch attacks on sys-
tems and to encourage the rapid dissemi-
nation of attack information.

Not only is it much easier to launch
attacks, but the payloads of those attacks
are becoming increasingly sophisticated.
We are seeing a proliferation of malware
designed to do nasty things to the victim
such as stealing information, spreading
rapidly, and clogging networks, and serv-

ing as bot1 networks that can be used to
launch denial-of-service attacks or func-
tion as spam relays.

Often this malware will be tailored to
a particular attack, for example, a Trojan
horse may be specifically designed to steal
information from one organization, to be
used only in that circumstance. This
means that Trojan horse will be some-
thing new and not detected by signatures
in traditional antivirus or antispyware
tools. If a signature is developed (assum-
ing the Trojan horse is ever discovered), it
will be useless because the Trojan horse
will never be used again.

It is a trivial matter to develop cus-
tomized malware: in the simplest case, the

attacker can use Morphine [3], a hosted
service that will obfuscate any piece of
malware for a small fee (about $36),
ensuring that the malware is not
detectable by any of the standard signa-
ture-based antivirus systems.

New Technologies for
Shielding Vulnerabilities
With the new technologies attackers are
developing, we can no longer rely on reac-
tive technologies such as patching and
static signature scanning. These technolo-
gies are too slow to prevent widespread
damage, and too dependent on human
expertise to be able to scale to the com-
plexity and growing size of IT systems
today. We need a new approach.

We can move forward in the arms race
by using the proactive technology in an
intrusion prevention system (IPS). Before
harm is done, an IPS will proactively
detect attacks and prevent them, provid-
ing a powerful new layer of defense. An
IPS can be used to shield vulnerable sys-
tems, giving time for administrators to
fully test and deploy patches at their own
convenience, and buying time for human
operators to better understand the threat.
Further, an IPS reduces the need for
human expertise and saves on expensive
and hard-to-scale human resources.
Properly deployed, IPS can protect
against a wide variety of threats, including
surreptitious malware and fast-spreading
destructive worms and viruses.

The world of IPS technology can be
very confusing. There are a host of dif-
ferent technologies available, and it can be
very difficult for administrators to deter-
mine which are the most suitable for their
needs. To add to the confusion, IPS can
mean different things to different people.
In this article, I discuss the relatively new
technologies (within the last few years)
that are commonly acknowledged to com-
prise an IPS. I do not include technolo-
gies such as firewalls and signature-based
antivirus systems that have been around

The Information Technology Security Arms Race

Dr. Steven Hofmeyr
Sana Security

Increasingly, new attack technologies and tools are overwhelming existing information technology defenses. This ongoing arms
race requires new technologies for the defender. In this article, I describe how an intrusion prevention system (IPS) fills this
need, and I dissect the sometimes confusing world of IPS, describing the various technologies available, and where and how to
deploy them.

“Before harm is done,
an IPS [intrusion

prevention system] will
proactively detect

attacks and prevent
them, providing a

powerful new layer
of defense.”

16 CROSSTALK The Journal of Defense Software Engineering October 2005

for many years and are failing to secure IT
systems. The intent of this article is to
clarify the IPS landscape; to this end,
there are three aspects that need to be
considered: (1) where to deploy IPS, (2)
what kind of IPS technology to deploy,
and (3) how to deploy the chosen IPS sys-
tem. I will address each of these in turn.

Where to Deploy IPS
There are basically two places to deploy
IPS: on the network or on the host com-
puter (see Figure 1). The network IPS
has several advantages: It is usually a sin-
gle device or appliance that is both easy
to manage and easy to deploy. All the
security administrator need do is drop a
box onto the network segment; usually
no permission is required from the appli-
cation owners because there will be no
conflicts with software installed on the
hosts. Furthermore, a network IPS pro-
vides broad coverage if placed at an
appropriate choke-point: A single appli-
ance can protect a whole segment with
multiple hosts.

However, there are limitations to the
network IPS. The broad coverage can also
be detrimental because failure of a single
appliance will cut off traffic to a whole
subnet, a consequence of the fact that the
IPS has to be inline to be able to drop
malicious traffic. There is also a perform-
ance tradeoff because the more hosts a
single appliance protects, the more traffic
it will have to process; a network IPS that
does sophisticated traffic analyses can
rapidly become a bottleneck, unable to
cope with high traffic volumes. When
deploying network IPS, an administrator
should be well aware of this tradeoff.

By contrast, IPS on the host does not
suffer from the same problems. Each
host will have its own IPS software so

the security processing is distributed
across all machines and performance is
no longer an issue. Further, a host IPS
tends to be more robust, because failure
of one system will only have a small
affect on the overall performance of
hosts in the network.

There is another powerful driver
toward using host IPS: de-perimeteriza-
tion. Network IPS requires a clear notion
of a network perimeter, and unfortunate-
ly the perimeter is collapsing with the
advent of distributed applications – such
as Web services – and more business
being done over the Internet necessitating
closer links with partners, suppliers, etc.
This trend is so powerful that a high-level
industry organization, the Jericho Forum,
has been created to promote de-perime-
terization [4]. The loss of the perimeter is
exacerbated by the increasingly mobile
work force. Users that work from outside
the corporate or government network can
easily pick up malware infections and
bring those into the secure environment,
infecting all vulnerable hosts behind the
firewall. This is another compelling rea-
son for the rapid adoption of host IPS.

In typical deployments, however, an
organization will use both network and
host-level IPS. This layered approach gen-
erally gives the most comprehensive secu-
rity, although organizations deploying
multiple layers should be aware that the
more layers in place, the more chance
there is of false positives, and the more
difficult it is to manage the system. Any
security architecture using IPS will also
include network-level defenses to protect
against network-level threats such as
denial-of-service attacks and eavesdrop-
ping, but these are not generally consid-
ered part of IPS, and are not discussed in
detail in this article.

What to Deploy: IPS
Detection Technologies
Although IPS is designed to prevent
attacks, and not just detect them, it is still
reliant on its underlying detection tech-
nology: Only that which is detected can
be prevented. Attacks are detected and
then prevented by an IPS. For example, a
network IPS that drops packets2 from an
attack has first detected the packets and
then prevented the attack by dropping the
packets. Similarly, a host IPS that prevents
applications from making system calls has
detected the system calls being attempted,
and prevented them from being executed,
hence preventing the attack. The discus-
sion of IPS technology is greatly clarified
by separating out the detection from the
prevention aspects. In this section, only
detection technologies are discussed; in
the section, “What to Deploy: IPS
Prevention Technologies,” prevention
technologies are discussed.

There are a variety of detection tech-
nologies available, each with its advan-
tages and disadvantages. Many of these
have long been in development and used
in intrusion detection systems, and are
little changed although they are used in
an IPS. Often the best solution is a lay-
ered approach in which multiple tech-
nologies are used to complement each
other’s strengths and cover each other’s
weaknesses.

Signature-Based Detection
Signature-based detection relies on human
experts knowing and understanding what
particular exploits look like so the experts
can encode signatures for those exploits.
Typically, signature-based technology is
used to scan static data such as network
packets. Signatures are exploit-focused, mean-
ing they will not protect a vulnerability, but
only particular exploits of that vulnerabili-
ty. For example, there are many ways to
write a buffer overflow, but typically a sig-
nature will only look for one way of doing
so; if the attacker changes the code in the
exploit, the signature will not detect it.

Generally, there are many different
ways in which a vulnerability can be
exploited, and a signature will only protect
against one of those. Because of this, sig-
natures only protect against yesterday’s
attacks – those that we already know
about. Signatures will not protect against
zero-day (unknown) threats, or against
modified or mutated malware. In addition,
signatures require extensive human
expertise and constant updating, an
approach that does not scale well.
Fundamentally, signatures are one of the

Mobile Work Force

Laptops

Internet

DMZ

Intranet

• Host IPS

Figure 1: Typical IPS Deployment

Software Security

October 2005 www.stsc.hill.af.mil 17

The Information Technology Security Arms Race

poorest choices for detection in IPS
because of the human overhead, and the
fact that this approach fails continually.
For these reasons, signatures are rarely
used in IPS.

Expert-Based Detection
Expert-based detection relies on human
experts defining a set of rules that dictate
what behaviors are normal, and hence,
allow for applications and operating sys-
tems. The expert-based approach relies on
humans understanding the applications
and systems to be protected, but requires
little or no knowledge of attacks. This
approach can be very effective at protect-
ing against zero-day threats because these
generally cause deviations in application
or system behavior. However, this
approach requires that the people defining
the rules know a great deal about the
applications and system to be protected,
which can be problematic for complex
and custom applications.

When an application is complex,
expert-based detection ends up being
detuned to reduce false positives: The
rules become increasingly generalized to
the point where they offer little or no pro-
tection at all. For example, an IPS might
have a rule preventing applications from
loading drivers into the kernel. However,
some applications may legitimately need to
load drivers, which would result in a false
positive. A common response is to turn off
the rule altogether because of the com-
plexity of determining which applications
should be allowed to load drivers. Relaxing
the rule will allow any application to load
drivers with consequent security risks.

Generally, the expert-based approach
works best when applied to well known,
relatively simple applications with well-
known behavior that does not deviate sig-
nificantly from one system to the next, or
from one use to the next.

Specification-Based Detection
Specification-based detection gets away
from dependence on human expertise by
deriving a set of rules governing normal
(allowed) behavior by either statically
scanning protocols, or application binary
or source code. This has the advantage of
avoiding the overhead of human involve-
ment and human bias and error, which can
plague approaches such as expert-based
detection. Although this approach can be
powerful, it is limited in that it is often too
generalized.

When protecting applications, the pro-
tection will usually only prevent injected
code, and not detect (and hence be able to
prevent) the large number of attacks that

exploit other types of vulnerabilities such
as misconfigurations. In the case of pro-
tocol-based network protection, it is limit-
ed in that it cannot detect flaws in the pro-
tocol itself, and often networking compo-
nents and applications will not implement
protocols strictly according to the specifi-
cations, resulting in many false positives.

Autodidactic Detection
Autodidactic detection attempts to auto-
matically derive a normal model like the
specification-based approach, but uses
learning or auto-configuration to refine the
normal profile so that the approach does
not suffer from excessive generalization.
The normal model is derived from moni-
toring systems during normal usage and
learning the normal model of network
traffic, or host behaviors. This learning can
be done in a production environment or a
quality assurance (QA) laboratory.

Autodidactic systems tend to be scalable
and offer very good protection for all kinds
of applications and networks because of
their ability to automatically learn all the
nuances of complex behavior. However,
there are several limitations to this
approach. First, only stable behaviors or
network patterns can be learned, so in high-
ly variable environments or with highly vari-
able usage patterns the system can prove to
be inaccurate. Second, learning takes time,
during which the system can be vulnerable
to attack. This can be offset by doing the
learning in another environment such as a

QA lab or a test lab, but how well that works
depends on how closely the lab environ-
ment represents the real environment.

Innate Defense Detection
Innate defense detection is most similar to
signature-based in that it protects against
specific attacks, but it differs from signa-
ture-based in that it is vulnerability-focused: It
detects a whole class of attacks rather than
instances of a particular class. A good
example is technology for detecting buffer
overflows: There are many different
attacks that exploit buffer overflows,
necessitating many different signatures,
but an innate defense for buffer overflows
will stop every kind of buffer overflow
without requiring any knowledge of spe-
cific attacks.

Generally, an innate defense will detect
one class of threats, and do so effectively,
with high accuracy and little or no over-
head in terms of tuning or configuration.
This approach is very important for pro-
tecting systems by default on a large scale
since this kind of technology can easily be
distributed with the operating system. It
can be used stand-alone to incrementally
improve protection, but because the pro-
tection provided by innate defenses is not
comprehensive, it is best used as part of a
layered solution.

The major shortfall of this approach is
that not all threats are amenable to pre-
vention through innate defenses; there
may not be any way of developing a
generic method of detecting all attack
instances within a given threat class.

What to Deploy: IPS
Prevention Technologies
The hardest aspect of prevention is that it
should be immediate (proactive) whenever
possible. This can be problematic if the
system has to initially gather information
to determine if an attack is actually hap-
pening; too much delay in the response
will result in damage. There is often a
trade-off: The more information is used
to determine if an attack is happening, the
more accurate the IPS, but the more
potential there is for the attack to cause
harm. Another important aspect of pre-
vention is that it can cause damage when
reacting to false positives because it can
block legitimate behavior or data. One
way to minimize the potential harm is to
have responses that are as fine-grained as
possible, for example, to block a particular
system call, rather than kill a process.

However, fine-grained responses can
only go so far in ameliorating the damage
done by responses to false positives. The

“Where an organization
is uncertain, they should
follow a process whereby

they first test the
performance of the IPS.
On the host, this means
measuring the impact on
running applications and
memory/disk usage, and

in the network, this
generally means

measuring network
throughput and latency.”

18 CROSSTALK The Journal of Defense Software Engineering October 2005

problem is that currently all prevention
tends to be all or nothing: Either an
action is allowed, or it is blocked. For
example, host IPS tends to block actions
such as file accesses, network accesses,
process starts, etc., and network IPS tends
to drop packets, reset connections, and
block particular Internet protocol
addresses. To move forward, we need
benign, recoverable responses. The goal is
responses that can stop attacks, but allow
the system to recover from false positives.

For example, databases have mecha-
nisms for rolling back transactions; we
can expect to see similar concepts in the
future in IPS. Another method of benign
response is using delays to slow down the
rate at which attacks propagate. Research
has shown that this can be an effective
method of blocking attacks [5], and can
also be very useful in slowing down virus
and worm propagation [6]. Prevention
technologies in IPS today are extremely
useful and powerful, but we expect to see
great improvements in the future.

How to Deploy IPS
Typically, the first step in deploying IPS
will be testing and evaluation. The extent
to which an organization does testing
depends on many factors, including the
resources available for testing and how
comfortable an organization is with the
reported and claimed functioning of IPS.
Where an organization is uncertain, they
should follow a process whereby they first
test the performance of the IPS. On the
host, this means measuring the impact on
running applications and memory/disk
usage, and in the network, this generally
means measuring network throughput and
latency. Stability can be an even more
important measure: Does the IPS crash
and block network traffic or bring down
the host? A good IPS should never impact
performance and stability unreasonably,
although bear in mind that network IPSs
are usually designed to support various
speeds, and an IPS that processes traffic
faster tends to be a lot more expensive.

Another important factor to test is
accuracy. Does the IPS stop attacks effec-
tively without high false alarm rates? One
way to test this is in a lab by running the IPS
on vulnerable systems and actively launch-
ing attacks against them. Although this
gives some idea of accuracy, it is limited in
that it gives very little idea of usability, scal-
ability, and false positive rates in the real
world. For example, it will often be a simple
matter to configure an expert-based IPS in
a lab, protecting standard applications – the
accuracy may appear to be very high.
However, deploying such technology out in

the production environment may lead to
many false alarms with a subsequent detun-
ing and loss of accuracy of the IPS. The
importance of evaluation in the production
environment cannot be overstated.

Once the IPS is tested, the next phase
is usually a limited deployment phase,
using the IPS to protect a few systems
such as those under high threat in the
Demilitarized Zone3, or those that are of
little importance (hence false positives are
acceptable). When the IPS has proven
itself in the limited deployment phase, it
can then be deployed across the whole
organization. This process will obviously
differ for network and host IPS.

Once deployed, the organization enters
the maintenance phase; most IPS will have
to be tuned whenever there are changes in
the organization such as additions of new
networks or machines, or reconfigurations

of applications. An organization should
plan for these changes knowing that they
will have an effect on the IPS deployment.
As stated before, some IPS technologies
are much more adaptable than others (for
example, the autodidactic approach) and
are much easier to deal with during the
maintenance phase.

The Benefits of IPS
IPS is starting to be widely deployed in
many different market sectors across
many different organizations. There are
three markets that are seeing immediate
benefit from IPS: the financial sector; the
government, including the military; and
the health-care industry. All of these sec-
tors are under increasing attack and feeling

the pressure of new government regula-
tions such as Sarbanes-Oxley [7], the
California Senate Information Disclosure
Bill 1386 [8], and the Health Insurance
Portability and Accountability Act of
1996 (HIPAA) [9].

For example, military organizations are
using the Internet and commercial off-
the-shelf software to realize efficiency
gains, but are consequently at risk from
attacks that target platforms such as
Microsoft Windows. It is vital to the secu-
rity of the country that these organiza-
tions maintain high standards of protec-
tion; to this end, IPS is an essential part of
the defenses. We are also seeing the poten-
tial for IPS in the mobile battlefield where
unprotected mobile computers such as
laptops would be prime targets for attack,
especially if they are not used and not
updated when in storage and then brought
out rapidly for battlefield deployment.

Financial organizations are also among
the early adopters of IPS. They find IPS
particularly useful for securing unpatched
applications. For example, many financial
organizations mandate at least three
weeks’ testing of any new patch because
faulty patches can bring down mission-
critical servers. However, three weeks of
exposure for vulnerable servers connected
to the Internet will almost certainly result
in compromise, so these organizations
turn to IPS to enable them to adequately
test patches while still ensuring their
servers are protected.

In the health-care industry, regulations
such as HIPAA require health-care
providers to ensure the confidentiality of
patient data. Deploying intrusion detec-
tion systems and other reactive technolo-
gies that only determine when an attack
has happened after the fact is not suffi-
cient because valuable patient data will
already be stolen. Hence, the health-care
industry is realizing critical benefits
through the ability to stop information
leaks before any harm is done.

Summary
IT security is an ongoing arms race.
Recently, attackers have been gaining the
upper hand with a new set of attack tools
and techniques. IPS regains the initiative
for defenders, providing a shield for
unpatched vulnerabilities. This buys time
to test and deploy patches, reduces human
resource cost, and reduces security
breaches and the associated costs.

But IPS can be complex. An organiza-
tion should know where to deploy IPS,
whether on the host or network (ideally,
both), and the tradeoffs inherent in such a
decision. Further, an organization should

Software Security

“Once deployed, the
organization enters the

maintenance phase; most
IPS will have to be tuned

whenever there are
changes in the

organization such as
additions of new

networks or machines,
or reconfigurations
of applications.”

October 2005 www.stsc.hill.af.mil 19

The Information Technology Security Arms Race

understand what sorts of technology are
available and what are most suitable for its
environment. In general, the best
approach is a layered one that uses multi-
ple technologies. Finally, an organization
should plan for a phase of testing and
evaluation, and should know how to go
about rolling out the IPS.

The technologies described in this arti-
cle all exist in commercial products, of
which there are many. When considering
deploying IPS, an organization should
search for vendors in the IPS arena and
solicit information from a set of vendors to
ascertain exactly what they do. This article
is intended to be a useful guideline in cut-
ting through the marketing language and
enabling users to understand exactly what a
vendor’s products are likely to achieve.

Implementing IPS will take effort and
money, without doubt, but IPS is essential
in today’s threat environment. Without
improved security measures, our IT sys-
tems will soon become worse than use-
less, and the costs of failed security will
far outweigh the costs of IPS.u

References
1. Flake, Halvar. “More Fun With

Graphs.” Blackhat Federal 2003,
Tyson’s Corner, VA, 1-2 Oct. 2003
<http://cansecwest.com/csw04/csw
04-Halvar.ppt>.

2. Metasploit. 26 July 2005 <www.
metaspoloit.com>.

3. Anti-Detection Service. 11 July 2005
<ht tp ://hxde f . c zweb.o rg/an t i
detection.php>.

4. The Open Group. The Jericho Forum.

11 July 2005 <www.opengroup.
org/jericho>.

5. Somayaji, A. “Operating System
Security and Stability Through Process
Homeostasis.” Doctoral Diss. Univer-
sity of New Mexico, 2002.

6. Williamson, M., J. Twycross, J. Griffin,
and A. Norman. “Virus Throttling.”
Technical Paper HPL-2003-69. Hew-
lett Packard Labs, 2003.

7. Sarbanes-Oxley. “Financial and Ac-
counting Disclosure Information.”
Huntington Beach, CA: Sarbanes-
Oxley <www.sarbanes-oxley.com>.

8. Sen. Peace, Assembly Member Simi-
tian. “SB 1386.” California Senate, 26
Sept. 2002 <http://info.sen.ca.gov/
pub/01-02/bill/sen/sb_1351-1400/
sb_1386_bill_20020926_chaptered.
html>.

9. U.S. Department of Health and
Human Services. “Office for Civil
Rights – HIPAA.” Washington: HHS,
1996 <www.hhs.gov/ocr/hipaa>.

Notes
1. A bot network is a network of com-

promised computers that are remotely
controlled by an attacker. Each com-
puter runs bot software that enables an
attacker to access the computer and
control it remotely.

2. This means not forwarding suspicious
packets of network data.

3. This is the part of the network that
contains Internet facing servers, and is
usually separated out from the main
intranet, forming a buffer zone
between the intranet and the Internet.

About the Author

Steven Hofmeyr, Ph.D.,
is chief scientist at Sana
Security, which he found-
ed in 2000. Sana Security
is a market leader in
intrusion prevention with

its host-based products widely deployed
throughout industry and government.
Hofmeyer has also carried out research
at the Artificial Intelligence Laboratory
at the Massachusetts Institute of
Technology (MIT) and the Santa Fe
Institute for Complexity Studies. He has
authored and co-authored many pub-
lished papers on computer security,
immunology, and adaptive computation.
He has been an invited participant to
several U.S. government workshops on
future directions for technology such as
the Joint Engineering Team Roadmap
Workshop. In 2003, MIT’s Technology
Review named him as one of the top 100
young innovators under 35, and in 2004,
he was named one of the 12 innovators
of the year by InfoWorld. Hofmeyr has a
doctorate in computer science from the
University of New Mexico.

Sana Security
2121 El Camino Real
STE 700
San Mateo, CA 94403
Phone: (650) 292-7152
E-mail: steve@sanasecurity.com

Security Issues in Garbage Collection
Dr. Chia-Tien Dan Lo, Dr. Witawas Srisa-an,

and Dr. J. Morris Chang
University of Texas at San Antonio

This article examines Java security models, describing security
issues in garbage collection (GC), metrics used to predict pro-
gram behaviors, and their relations. Heap memory attacks are
introduced and classified into slow death and fast death cate-
gories. These are potential scenarios if GC is under attack.
Experimental results show that a compromised system may result
in GC being invoked more times than its normal counterpart.
Furthermore, presented here is a run-time monitoring system
that can detect anomalous program behaviors using the collected
memory metrics. This can be a run-time throttle that controls
program behaviors, and a postmortem diagnosis technique in
case of heap memory attacks.

Attacks and Countermeasures
Zaid Dwaikat

Systems and Software Consortium, Inc.
Security attacks on information systems have become a standard
occurrence directed against all components of a system, includ-
ing people, networks, and applications. Attacks have gotten
more complex while the knowledge needed to execute such
attacks has decreased. Attackers look for the weakest links in
each component; using sophisticated techniques and freely avail-
able tools, they exploit potential vulnerabilities wreaking havoc
on information systems. To better defend systems, it is necessary
to understand how they function and, more importantly, how
attackers use vulnerabilities to compromise them. Information
systems today are distributed, complex, and extensible. This arti-
cle provides an overview of the most common attacks: attacks on
people, networks, applications, and passwords.

MORE ONLINE FROM CCRROOSSSSTTAALLKK

ThCrossTalk is pleased to bring you additional articles with full text at <www.hill.af.mil/crosstalk/2005/10/index.html>.

20 CROSSTALK The Journal of Defense Software Engineering October 2005

High-assurance systems are used in
environments where failure can

cause security breaches or even a loss of
life [1]. Examples include avionics,
weapon controls, intelligence gathering,
and life-support systems. Before such a
system can be deployed, there must exist
convincing evidence that it can support
critical safety as well as security properties.

The avionics community has
addressed the need for safety-critical sys-
tems by developing the DO-178B and
DO-255 standards, which provide a set of
guidelines for the design, analysis, and
evaluation of system safety [2, 3]. Though
adequate for the safety evaluation of air-
borne systems, neither is sufficient to
address the security concerns of critical
security systems such as those that protect
national security. Such high-assurance sys-
tems require the rigorous specification
and implementation requirements out-
lined in the Common Criteria (CC) [4].

The CC is a jointly developed evalua-
tion standard for software that was creat-
ed by a consortium representing the
United States, United Kingdom,
Germany, France, Canada, and the
Netherlands. The purpose of the CC is to
standardize evaluation of security features
in software, which allows, for example, the
comparison of different security solu-
tions. The CC achieves this by providing
guidelines for the design, analysis, and
evaluation of critical systems defined at
seven Evaluation Assurance Levels
(EALs). The higher the assurance level,
the stricter the requirements mandated by
the CC. At the highest levels (EAL 5-7),
the CC requires the use of formal meth-
ods, mathematical models, and proofs [1].

The level of difficulty and complexity
of formal verification increases in an
exponential manner with the number of
analyzed lines of code (LOC). Code bases
of over 100,000 LOC are considered to be

unverifiable [5]. The goal for a verifiable
software component is under 4,000 LOC
[6]. With this restriction on code destined
for EAL 5 certification or higher, the
design shift from monolithic code bases to
smaller modular components must occur.

A system designed specifically for
EAL 5-7 certification is the Multiple
Independent Levels of Security and Safety
(MILS) architecture [7]. The MILS
approach toward meeting the formal eval-
uation requirements of the CC is to sepa-
rate system functionality into smaller, indi-
vidually verifiable components. The MILS
architecture enables the enforcement of
system-wide information control policies
via mechanisms built into the kernel as
well as middleware components that cre-
ate the authorized communications paths
between applications.

One example of MILS middleware
security component is an application-level
message filter called a guard, or mediator.
Since MILS guards can be verified inde-
pendently with respect to other compo-
nents, they can be built once and used
within any MILS system that needs appli-
cation-level message filtering.

This article describes the MILS initia-
tive led by the Air Force Research
Laboratory (AFRL) with stakeholder
input from the Air Force, Army, Navy,
National Security Agency, Boeing,
Lockheed Martin, Objective Interface
Systems, Green Hills Software, Lynux
Works, Wind River, General Dynamics,
Raytheon, Rockwell Collins, MITRE, and
the University of Idaho. MILS technology
is targeted toward the C-130 Avionics
Modernization Program, F/A-22, F-35,
C-130, Commanche, global positioning
system, the Joint Tactical Radio System

The MILS Architecture for a
Secure Global Information Grid

Dr. W. Scott Harrison, Dr. Nadine Hanebutte, Dr. Paul W. Oman, and Dr. Jim Alves-Foss
Center for Secure and Dependable Systems

Multiple Independent Levels of Security and Safety (MILS) is a joint research effort between academia, industry, and gov-
ernment to develop and implement a high-assurance, real-time architecture for embedded systems. The goal of the MILS archi-
tecture is to ensure that all system security policies are non-bypassable, evaluatable, always invoked, and tamper-proof. Using
these formally proven security policies guarantees information flow control, data isolation, predictable process control, damage
limitation, and resource availability. As applications are not considered trustworthy components, information flow control needs
to be performed by entities external to the applications. This approach allows for the integration of legacy applications that do
not necessarily have security integrated into them. Therefore, the MILS architecture creates an environment that adds safe-
guards to previously insecure applications, allowing the integration of possibly insecure applications into a secure environment.
To accomplish this in the MILS architecture, guards are placed between communicating entities to act as message content fil-
ters and enforce information flow control. This article discusses issues concerning design and implementation of MILS compo-
nents for message routing and guarding on a secure Global Information Grid facilitating net-centric warfare and defense.

Figure 1: The MILS Architecture

Figure 2: Processes, the MMR, and Guard Message Path

Separation

Kernel

Guard MMR A

12

Separation

Kernel

B MMR Guard

56

3 4Network

Partitions

Processes

Logical Connection

MILS

Hosts

Client

MMR

Guard 1

MMR

Server

Conceptual

Message Path

Actual

Message Path

Figure 1: The MILS Architecture

The MILS Architecture for a Secure Global Information Grid

October 2005 www.stsc.hill.af.mil 21

and the LandWarrior Program [8]. A pro-
totype proof-of-concept of the system
described in this article has been imple-
mented within an embedded system at the
University of Idaho.

This technology is essential for the
Global Information Grid (GIG). The
GIG is envisioned as a globally connected
set of computer systems and software [9].
Object-oriented communications proto-
cols (such as those we describe in this arti-
cle) are vital to such a system [10]. Further,
as the information on the grid will consist
of many security classification levels, it
will be absolutely necessary to control the
information that flows through the GIG.
The MILS architecture allows exactly that.

The MILS Architecture
MILS is a verifiable, secure architecture
for executing different security-level
processes on the same high-assurance sys-
tem. The MILS architecture accomplishes
this by providing two types of separation.
MILS enforces a separation policy that
strictly controls communication between
processes of different security levels. This
prevents, for instance, a top-secret process
from communicating with an unclassified
process. Further, MILS separates tradi-
tional kernel-level security functionalities
into external modular components that
are small enough for rigorous evaluation
using formal methods. Verifiable secure
systems can then be built from multiple,
independently developed and certified
components.

The foundational component of
MILS is the separation kernel (SK). The
SK segregates processes and their
resources into isolated execution spaces
called partitions. Processes running in dif-
ferent partitions can neither communicate
nor infer each other’s presence unless
explicitly permitted by the SK. The SK
enforces compliance to information flow
policies via the MILS message routing
(MMR) component. The primary function
of the MMR is to route communication
between applications in different parti-
tions if that communication is allowed by
the policies of the system [11]. If not, the
MMR will not permit communication
between the partitions.

In conjunction with the MMR, which
simply fulfills routing functionalities on
messages between partitions, guards
enforce detailed, protocol-specific poli-
cies. A guard exists for each application-
level protocol supported in a MILS sys-
tem. If a guard determines that the con-
tent of a message does not comply with
information flow policy, the guard will
notify the MMR that will then disallow the

communication attempt or take action
based on security policy. Steps one
through six in Figure 1 show the path of a
message within a MILS architecture from
the sending process (A) to the receiving
process (B).

The advantage of using the MMR and
guards is that the system does not have to
trust the applications to conform to secu-
rity policies. The MMR (and later, the
guard) will enforce these policies. Thus, it
is possible to have a secure MILS system
while running untrusted applications with-
in the partitions. This is because the SK
prevents any other possible partition com-
munication.

Because of the separation of responsi-
bilities between message routing and mes-
sage content filtering for each protocol,

the individual components (the MMR and
multiple guards) can be independently ver-
ified. Verification is only possible because
the guards and MMR have distinct and
well-defined functionalities. Neither acci-
dental nor malicious communication
attempts that violate system policy will be
successful.

Many communication protocols were
not designed to provide artifacts that allow
systematic security policy violation han-
dling such as proper error messages. In
general, most protocols were not written
with security as an objective, and thus,
there are typically no error messages that
are security-specific. As an example, con-
sider two clients: a client classified as Secret
requesting top-secret information, and a
client classified as top-secret requesting the
same information. Further, assume that

there is an error from both clients in the
request message (perhaps the query was
incorrectly formed). Generally in this situ-
ation, a single error message would be
returned to both clients. However, in many
systems, this would not be correct behav-
ior; we may not wish for the secret client to
know that it was contacting a valid server
at all, as this gives the client information
about the state of the system that might
invalidate security policy. Thus, there is a
need, not generally implemented in most
protocols, for security-specific error mes-
sages that do not reveal information about
the state of a system.

Therefore, the MMR also has to deter-
mine which error messages are relayed
back to the sender due to security policy
violations without disrupting the overall
execution of the communication initiator.
A challenge similar to that of the proper
relaying of error messages is that of inte-
grating legacy software into a MILS sys-
tem. This is because one of the design
goals of a MILS architecture is trans-
parency, i.e., existing (legacy) applications
can be seamlessly integrated into a MILS
environment. The MMR and communica-
tion channel guards facilitate this trans-
parency.

Multi-Level Access Control
Multi-level secure (MLS) systems enforce
a high-level, inter-partition security policy
that dictates whether partitions with dif-
ferent clearances can communicate.
Traditionally, the military model of a
secure operating system includes a MLS
concept. The idea behind this concept is
that the system will be processing data
items that are classified at different levels
of security, and the information flow
security policy that prevents the transfer
of high-level classified information into
low-level objects must be preserved.
Therefore, we define a MLS system as one
that must be certified to process and out-
put data at multiple classification levels.
Classic security models such as the Bell-
LaPadula model [12] have been created to
specify the secure behavior of such MLS
systems. The problem with pure MLS sys-
tems is that they must be rigorously ana-
lyzed for security before they can be certi-
fied. Every portion of the MLS system
must be analyzed to ensure that it proper-
ly handles labeled data and that there is no
possible violation of the security policy.
Even with a Trusted Computing Base
architecture or reference monitor in place,
there is often too much to evaluate.

The MILS architecture was developed
to resolve the difficulty in certifying MLS
systems by separating out the security

“The MILS architecture
enables the enforcement

of system-wide
information control

policies via mechanisms
built into the kernel as

well as middleware
components that create

the authorized
communications paths
between applications.”

22 CROSSTALK The Journal of Defense Software Engineering October 2005

Software Security

mechanisms and concerns into manage-
able components. A MILS system isolates
processes into partitions, which define a
collection of data objects, code, and sys-
tem resources. These individual parti-
tions can then be evaluated separately.
This divide-and-conquer approach will
exponentially reduce the proof effort for
secure systems. For instance, a traditional
MLS policy may allow a secret partition
to send messages to a partition that has
both secret and top-secret clearance. An
additional application-specific transport
policy (i.e., a protocol-specific guard) is
needed to do this. The protocol-specific
guard policy specifies constraints on the
contents of messages sent between parti-
tions already allowed to communicate by
the MLS policy.

The MMR and SK can fulfill MLS
policies, while the protocol guards enforce
application-specific security policies that
may or may not be MLS policies; howev-
er, the SK and MMR do work in tandem
with the guard policies to provide fine-
grained access control of application-level
messages.

A MILS Database Server
Consider a multi-level secure database
application. This database would contain
entries of different security levels, e.g., top
secret, secret, classified, and unclassified.
Remote processes from different parti-
tions can invoke read and write methods
on this central database. However, if a
client process that is only classified to han-
dle secret data (e.g., Secret_Read()) attempts
to invoke a read method on top-secret data
(e.g., TopSecret_Read()) from the database
server, the request must either be denied
or the data must be downgraded from

top-secret to secret prior to invoking the
requested read.

Polyinstantiation is another solution to
this problem; however, the challenges are
similar. Stated simply, polyinstantiation is a
situation in which users at different secu-
rity classifications receive (possibly) differ-
ent responses to the same queries. As an
example (adapted from [13]), consider that
we might have information regarding a
ship (S), an objective (O), and a destina-
tion (D). When an unclassified user
queries this information, he or she would
receive the information {S=U.S.S.
Starfish, O=Surveying, D=Hawaii}.

However, a top-secret level user would
receive the information {S=U.S.S.
Starfish, O=Spying, D=Coast of
Vietnam}, which presumably is the actual
state of the system. Such a solution comes
at the cost of having to create very large
databases and, as above, requires authenti-
cation of the true originator of a request.

Adding functionality to the database
partition to determine the true origin of
the request sender and to verify that the
sender has proper classification is a less
complex solution. Such a solution, howev-
er, would cause other problems:
a. The server’s code base might become

too large to evaluate formally.
b. Dedicated server processes will have

to be rewritten to account for every
type of data transaction (e.g., top
secret, secret, unclassified, etc.).

c. The server’s responses to valid but
unauthorized requests would need to
be added to the server’s code base.
The MILS solution is to allow the

MMR to parse the message before it
reaches the client, consult a policy, and

then either pass or reject the message after
an in-depth content analysis (which would
potentially still be necessary, although not
as thorough, for a system that incorpo-
rates polyinstantiation). Such an analysis
would have to account for routing policies
and protocol or content-specific policies.
This requires extra complexity in the
MMR, which increases with every applica-
tion-layer protocol supported in the MILS
system. Therefore, the MMR simply deter-
mines if the communication between par-
titions is allowed according to the security
policy and, if so, identifies the message
type and passes it on to the protocol-spe-
cific guard.

When a protocol guard receives a mes-
sage from the MMR, it parses the mes-
sage, consults a protocol-specific policy,
and then notifies the MMR whether to
allow or deny the message. If the message
is allowed by the protocol policy, the
MMR sends the message on to its destina-
tion. Otherwise, the MMR will perform
error handling. Figure 2 shows the logical
structure of the MMR and the protocol-
specific guard situated between client and
server applications.

To illustrate the previous example
within a system that contains a MMR and
protocol guard, assume that a secret level
client attempts to invoke the read method
of the top-secret database server. The
client encapsulates the request in a proto-
col-specific message and sends it. The
MMR determines that the client is allowed
to communicate with the server, recog-
nizes the message as being of a particular
protocol type, and routes it to the appro-
priate guard for analysis. The guard exam-
ines the request message and determines
that the client is not allowed to invoke the
read method of the top-secret database
object. Finally, the guard instructs the
MMR to discard the message, and possibly
generate an error message to be returned
to the client.

It should be noted that simply discard-
ing the message will generally be insuffi-
cient. As the client never receives a
response from the server, the client will
likely continue to make the same request.
Since this condition also occurs under nor-
mal circumstances such as those due to
temporary network outages, for example.
Thus, one function of the protocol-specif-
ic guard is to generate error packets, which
look like standard protocol error messages
that will be sent back to the client. If no
response is expected, obviously an error
message need not be returned.

An Example Policy
The Common Object Request Broker

Figure 1: The MILS Architecture

Figure 2: Processes, the MMR, and Guard Message Path

Separation

Kernel

Guard MMR A

12

Separation

Kernel

B MMR Guard

56

3 4Network

Partitions

Processes

Logical Connection

MILS

Hosts

Client

MMR

Guard 1

MMR

Server

Conceptual

Message Path

Actual

Message Path

Figure 2: Processes, the MMR, and Guard
Message Path

“Thus, it is possible to
have a secure MILS
system while running
untrusted applications
within the partitions.

This is because the SK
[separation kernel]
prevents any other
possible partition
communication.”

October 2005 www.stsc.hill.af.mil 23

The MILS Architecture for a Secure Global Information Grid

Architecture (CORBA) is a platform-inde-
pendent middleware architecture that
facilitates common client/server requests.
CORBA Object Request Brokers commu-
nicate via the General Inter-Orb Protocol
(GIOP). We will illustrate the MILS archi-
tecture with an example using a CORBA
GIOP guard.

Figure 3 illustrates an example of the
MMR and a protocol-specific guard (in
this case, a CORBA GIOP guard) working
together to enforce MLS and transport
policies. Client A is a CORBA client appli-
cation running in secret-level partition 1,
and client B is a CORBA client running in
unclassified-level partition 2. A CORBA
database object is running in multi-level
secure partition 3, which has both secret
and top-secret clearances. The database
object has two methods, Secret_Read()
and TopSecret_Read(), which require the
invoking client to have secret and top-
secret clearances, respectively.

The MLS policy for our example sys-
tem is that all processes can only commu-
nicate with processes of equal or higher
security clearances. The GIOP transport
policy extends the MMR’s MLS policy by
placing further constraints on the GIOP
messages sent between partitions the
MMR already allows to communicate.

As Figure 3 shows, the MMR allows
client A to communicate with the data-
base object because partitions 1 and 3
both have secret clearance. The GIOP
guard, however, restricts client A’s com-
munication with the database object to
only invocations of the Secret_Read()
method since A does not have the top-
secret clearance required to invoke
TopSecret_Read(). Client B is not allowed
to access the database object at all. The
MMR blocks all requests sent by B
because partition 2 does not have the
equivalent clearance(s).

Conclusion
The MILS architecture provides a cost-
effective and efficient way to build verifiable
secure systems. By separating security func-
tionality into modular components, high-
assurance systems can be engineered and
evaluated much more rapidly and independ-
ently. The MILS architecture is an approach
to system design that is supported by indus-
try and government. SKs, the lowest layer
of the MILS architecture, are already being
deployed by multiple real-time operating
system vendors [14]. Common criteria pro-
tection profiles are currently being devel-
oped for both the separation kernel [15]
and MILS middleware [16].

In this article, we have shown how a
security policy can be enforced on GIOP

messages sent between MILS partitions. A
policy that allows or disallows method
invocations based upon the requesting
client partition, the servant object, and the
object method also can be used. Our test-
bed implementations also show how
guards can allow a MILS system to
enforce both MLS and application-specif-
ic policies, thus providing fine-grained
access control of inter-partition commu-
nication.u

Clarification
This material is based on research spon-
sored by the AFRL and Defense
Advanced Research Projects Agency
(DARPA) under agreement number
F30602-02-1-0178. The U.S. government
is authorized to reproduce and distribute
reprints for governmental purposes
notwithstanding any copyright notation
thereon. The views and conclusions con-
tained herein are those of the authors and
should not be interpreted as necessarily
representing the official policies or
endorsements, either expressed or
implied, of AFRL and DARPA or the U.S.
government.

References
1. Alves-Foss, Jim, W. Scott Harrison,

Paul Oman, and Carol Taylor. “The
MILS Architecture for High
Assurance Embedded Systems.”
International Journal of Embedded
Systems 2005 (to appear).

2. Radio Technical Commission for
Aeronautics. “Software Considerations
in Airborne Systems and Equipment
Certification (RTCA DO-178B).”
Washington: RTCA Inc., 1992 <www.
rtca.org>.

3. Radio Technical Commission for
Aeronautics. “Requirements Specifi-
cation for Avionics Computer Re-
source (ACR) (RTCA DO-255).”

Washington: RTCS Inc., 2000 <www.
rtca.org>.

4. Common Criteria. CC Recognition
Arrangement: Common Criteria for
Information Technology Security
Evaluation (Vers. 2.1). 2004 <www.
commoncriteriaportal.org>.

5. Dransfield, Michael, et al. “MILS/
MLS Architecture for Deeply Embed-
ded Systems.” NetCentric Operations
2004.

6. MacLaren, Lee. “New Options in Em-
bedded Computing Security.” Boeing
Technical Excellence Conference, 2003.

7. Alves-Foss, Jim, Carol Taylor, and Paul
Oman. A Multi-Layered Approach to
Security in High Assurance Systems.
Proc. of the Hawaii International
Conference on System Sciences, 2004.

8. Adams, Charlotte. “Keeping Secrets in
Integrated Avionics.” Aviation Today
Mar. 2004 <www.ghs.com/down
load/articles/Aviation_today.pdf>.

9. Miller, Alyson, Mark Jefferson, and
Jeff Rogers. “Global Information Grid
Architecture.” The Edge: MITRE
Advanced Technology Newsletter July
2001 <www.mitre.org/news/the_
edge/july_01/miller.html>.

10. Ackermann, Robert. “Jointness De-
fines Priorities for the Defense De-
partment’s Global Grid.” Signal Mag-
azine Apr. 2001 <www.afcea.org/
signal/articles/anmviewer.asp?a=120
&z=115>.

11. Hanebutte, Nadine, et al. Software
Mediators for Transparent Channel
Control in Unbounded Environments.
Proc. of the 6th IEEE Information
Assurance Workshop, 2005.

12. Bell, D. Elliot, and Leonard LaPadula.
“Secure Computer System: Unified
Exposition and Multix Interpretation.”
ESD-TR-75-306. Bedford, MA:
MITRE Corp., 1976.

13. Jajodia, Sushil, and Ravi Sahndu.

Figure 3: An Example Policy

GIOP

Guard
MMR

Partition 1 (Secret)

Client A

Partition 2 (Unclassified)

Client B

Partition 3

(Secret, Top-Secret)

Database Object

Secret_Read()

TopSecret_Read()

Figure 3: An Example Policy

Polyinstantiation Integrity in Multi-
level Relations. Proc of the IEEE
Symposium on Research into Security
and Privacy, 1990 <http://citeseer.
ist.psu.edu/121576.html>.

14 Ames, Ben. “Real-Time Software
Goes Modular.” Military and Aero-
space Electronics. 14.9 (2003):24
<www.ghs.com/download/articles/

GHS_RTOS_modular_090103.pdf>.
15. National Security Agency. U.S. Gov-

ernment Protection Profile for Sepa-
ration Kernels in Environments Re-
quiring High Robustness (Vers. 0.621).
Washington: NSA, 2004.

16. University of Idaho. MILS CORBA
Protection Profile, Vers. 0.52 (draft).
Moscow, ID: Univ. of Idaho, 2003.

Software Security

24 CROSSTALK The Journal of Defense Software Engineering October 2005

About the Authors

W. Scott Harrison,
Ph.D., is an assistant
professor in the Com-
puter Science Depart-
ment at the University
of Idaho, where he has

been since 1999. His current research
involves information assurance and
computer security issues. Harrison has
a doctorate in computer science from
Tulane University in New Orleans.

Center for Secure and
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: harrison@cs.uidaho.edu

Nadine Hanebutte,
Ph.D., is a postdoctoral
fellow at the University
of Idaho’s Center for
Dependable and Secure
Systems. Her industrial

experience includes work at the
HypoVereinsbank in Munich, Ger-
many as a software engineer for the
risk-control department. Her current
research includes software security,
information assurance, and computer
security education. Hanebutte has a
Master of Science in computer science
from Otto von Guericke University in
Magdeburg, Germany, and a doctorate
from the University of Idaho.

Center for Secure and
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: hane@cs.uidaho.edu

Paul W. Oman, Ph.D.,
is a professor of com-
puter science at the
University of Idaho. He
held the distinction of
University of Idaho

Hewlett-Packard Engineering Chair for
a period of seven years. Oman is a sen-
ior member in the Institute of
Electrical and Electronics Engineers
(IEEE) and is active in both the IEEE
and the IEEE Computer Society. He
has published more than 100 papers
and technical reports on computer
security, computer science education,
and software engineering. He is a past
assistant editor of IEEE Computer and
IEEE Software.

Center for Secure and
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: oman@cs.uidaho.edu

Jim Alves-Foss, Ph.D.,
is an associate profes-
sor of computer sci-
ence at the University
of Idaho. He also
serves as the director of

the University of Idaho Center for
Secure and Dependable Systems,
which focuses on information assur-
ance education and research. His cur-
rent research involves the use of for-
mal methods for protocol analysis and
security policy verification.

Center for Secure and
Dependable Systems
University of Idaho
Moscow, ID 84844-1008
Phone: (208) 885-4114
Fax: (208) 885-7099
E-mail: jimaf@cs.uidaho.edu

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
JUNE2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

Departments

October 2005 www.stsc.hill.af.mil 25

LETTERS TO THE EDITOR

Dear CrossTalk Editor,

It is often said today that the difference between software reli-
ability and hardware reliability is that software does not fatigue,
wear out, or burn out.

Thirty years ago, it was common to read of computers that
would become sluggish and ineffective after running for a
while. The simple treatment was to shut down and restart.
Eventually it was realized that the problem was caused by poor
memory management. The invention of garbage disposal, when
used, takes care of it. Unfortunately even nowadays good mem-
ory management is not found as often as it should be, and
Professor Trivedi at Duke University has done a deal of work
trying to educate people in the effects of what he calls aging and
what to do about it.

It could as easily be called wear. Consider the following: we
speak of brakes wearing when they lose material, of structures
wearing by fatigue (change in the crystalline structure), and of
lubricating oil wearing out (chemical change). There is no com-
mon factor except simply reduced usability as a result of use.
And software with badly managed memory suffers reduced
usability as a result of use.

It is not a matter of which heated argument is worthwhile;
however, unless software designers recognize that they must
design to prevent reduced usability as a result of use, there will be
systems that have to be frequently restarted, causing a nuisance.

Roderick Rees
Boeing

Dear CrossTalk Editor,

In her article, “How and Why to Use the Unified Modeling
Language” (June 2005 CrossTalk), Lynn Sanderfer gave a
useful survey of the UML and the benefits it can bring to a

development process. It is also useful to discuss some of the
disadvantages of UML.

The developers must learn from the users enough to make
a domain description that is sufficient to create the application.
UML is not a satisfactory notation for a domain description,
because it is too hard for users to read.

There is no standard for saving and exchanging UML, so
there is a risk to maintainability in being locked in to a propri-
etary tool. XML records the model but not the layout of the
diagram, and the XML standard is a long way short of guaran-
teeing portability. In fact, there is a commercial market in XML
conversion from one proprietary dialect to another.

Most tools can export to the XML MetaData Interchange
(XMI) format. Unfortunately XMI records the model but not
the layout of the diagram, and the XMI standard is a long way
short of guaranteeing portability. Not only are its versions very
different, but proprietary extensions are common, and the
Object Management Group does not provide tests for compli-
ance. (In general, these are the features of UML that cannot be
mapped to the Meta-Object Facility.)

Generating code from UML is not easy. There is no single
tool or interface that has become standard for doing this. UML
is stored in a binary file, so changes to the model by different
developers cannot be merged automatically. The collaboration
of a team of developers, especially a distributed team, depends
on a source code repository and is founded on the diff utility.
The use of UML leads to a directive style and a waterfall
process, which is not suitable for all projects.

UML provides a good way to visualize object-oriented soft-
ware. It is a suitable tool for some tasks. But a process in which a
UML model is the central artifact is unsuitable for many projects.

Chris Morris
Daresbury Lab

Warrington, UK

Beyond Capability Maturity Model®
 April 2006

Submission Deadline: November 21, 2005

Why Programs Fail
June 2006

Submission Deadline: January 16, 2006

Netcentricity
July 2006

Submission Deadline: February 13, 2006

Please follow the Author Guidelines for CrossTalk, available on the
Internet at <www.stsc.hill.af.mil/crosstalk>. We accept article submissions on all
software-related topics at any time, along with Letters to the Editor and BackTalk.

CALL FOR ARTICLES
If your experience or research has produced information that could be
useful to others, CrossTalk can get the word out. We are specif-
ically looking for articles on software-related topics to supplement
upcoming theme issues. Below is the submittal schedule for three
areas of emphasis we are looking for:

Software is at the core of all our military
systems that provide technological

advantage and strategic superiority over
adversaries. Not only is software essential
in delivering technological advantage, it
also represents a significant portion of the
defense program’s operational capacity –
and a significant investment.

When software applications fall into
the hands of adversaries, they can analyze
weapons, tactics, techniques, and proce-
dures for vulnerabilities, and can produce
countermeasures and more lethal
weapons while saving research and devel-
opment costs [1]. Military forces must pre-
vent their information and weapons assets
from being turned against them.

In the past, systems built with propri-
etary hardware and custom software were
inherently more difficult to attack or
reverse engineer. This approach, however,
has become less desirable as commercial
off-the-shelf (COTS) hardware, operating
systems, and applications provide richer
features, performance, and flexibility while
reducing costs and deployment time.

Modern COTS software is complex,
with a Windows or Unix operating system
and major applications consisting of over
100 million lines of code. At an estimated
frequency of one security bug per thou-
sand lines of source code, a typical system
will have over 100,000 security vulnerabil-
ities [2]. By their nature, COTS systems
are also widely available to and well under-
stood by hackers. Information about vul-
nerabilities is widely shared, and tools for
reverse engineering are readily available on
the Internet. Military adoption of COTS
software makes it potentially easier for
foreign adversaries to reverse engineer and
steal the technological advantage embod-
ied in these software applications.

These facts are recognized by the
Department of Defense (DoD). In
December 2001, the Software Protection
Initiative (SPI) was established to prevent

the exploitation of national security appli-
cation software by U.S. adversaries. As a
U.S.-led initiative, the SPI is on the leading
edge of determining the requirements for
application security and guiding develop-
ment of protection techniques. In addi-
tion to the two traditional components of
information assurance – network security
and operating system integrity – the SPI
recognizes that an application-centric
approach to protecting important DoD
software is an essential third leg to the
information assurance triad [3].

Inherent application security is also
vital for critical infrastructure protection
at home. Energy and utilities, communica-
tions, financial networks, transportation,
and emergency and government services
all depend on maintaining our applications
and networks, which depend on software
that currently lacks this third element in
the triad of information assurance.

The DoD is acting to protect its soft-
ware technology from reverse-engineer-
ing, unauthorized use, theft, and other
types of exploitation. This article address-
es modern techniques to make software
applications inherently secure, and
explores ways to protect vulnerable appli-
cations and the data they handle, including
real-world examples.

The Need for Software
Protection
Commercial and military network security
specialists are beginning to recognize that
application protection is a vital part of
their overall security strategy. Perimeter
security, in which we attempt to protect
vulnerable assets in a trusted environment
behind a secure perimeter, no longer
works.

Firewalls were the first form of infor-
mation technology perimeter defense, but
they remain vulnerable to viruses and
worms that penetrate and compromise
internal systems using authorized network

access vectors. Additional defenses such
as virus scanners and intrusion detection
systems are reactive and remain vulnerable
to new threats. As networks expand, just
defining the perimeter is challenging.
Furthermore, perimeter defenses cannot
protect application software from
exploitation by insiders. With perimeter
defenses breaking down, the result is soft-
ware being deployed in inherently hostile
environments.

Cryptographic technologies have long
been used to protect data in transit and in
storage. However, cryptography assumes
that the end points, or points of use, are
trusted. This is no longer the case as
perimeter defenses such as firewalls break
down and insiders can no longer be trust-
ed. Compromised end-point systems can
render even the best cryptography useless.
Vendors of applications that present intel-
lectual property in the form of music,
movies, and games are representative of
the realization that valuable encrypted
data can only be fully protected by end-to-
end security that encompasses the applica-
tion software in addition to data encryp-
tion.

Application vulnerabilities are impor-
tant for the military because they exist in
one form or another in many military sce-
narios. History tells us that insider threats
can never be ignored when designing mil-
itary systems. COTS-based software com-
pounds the threat by providing hostile
parties with well-understood targets. But
further, military software systems
deployed in the field risk physical capture
by adversaries.

Software protection [4, 5] is vital to
defending these assets.

How Do We Protect the
End-Points?
Currently, the common approach to pro-
tecting the end-points is to use system-
level security by, for example, signing

Application Security: Protecting the Soft Chewy Center

Alec Main
Cloakware

The software at the heart of many military systems is traditionally defended using the network security model in which vul-
nerable processing and information are encircled in defensive technologies. Unfortunately, network security is proving insuffi-
cient to defend against a wide range of attack scenarios targeting commonly available software. Likewise, system-level strate-
gies are proving just as insufficient to defend against such attacks. However, effective application security provides protection
from the inside out by implementing defensive techniques into applications and data themselves. As more commercial off-the-
shelf hardware and software is used for military purposes, application security becomes more important since the skills and
vulnerabilities that can be leveraged in attacks are more widely known. This article applies commercial lessons learned to mil-
itary scenarios.

26 CROSSTALK The Journal of Defense Software Engineering October 2005

Application Security: Protecting the Soft Chewy Center

October 2005 www.stsc.hill.af.mil 27

and/or encrypting all the software and
data with a cryptographically strong key.
But this approach looks remarkably like
the old approach to network security – a
perimeter or fortress defense – with a soft,
chewy, vulnerable center.

The goal of system-level security is to
build a chain of trust with the root of trust
in hardware [6]. In this approach, the
hardware validates the boot loader, which
validates the kernel, which in turn vali-
dates the applications. Cryptographic [7]
techniques are used to sign the code
involved throughout the trust chain.

Code signing has its limitations. It is
commonly used on the Internet to warn
users of malicious software, called mal-
ware, and/or Trojan Horses that they
might download. To be effective, the host
must be trusted, every application must be
signed, and the user must not want or –
preferably – not even have the option to
download unsigned software. However,
the checking mechanism is typically not
secure itself, meaning that code signing
offers no protection when the host itself
is untrusted or under attack.

Chain of Trust or House
of Cards?
System security can be effective to a point;
however, once broken, everything above
the break, including the intellectual prop-
erty and critical processing within the soft-
ware applications, is exposed in much the
same way as network security is breached
once the firewall is penetrated.

System security is expensive to design
and deploy in the first place and, once
broken, is expensive and/or impractical to
effectively and securely replace. Legacy
issues also complicate upgrades needed to
keep ahead of the latest hacking tech-
niques. For these reasons, software-based
renewable systems are being deployed by
telephone companies for new, always-con-
nected applications such as Internet
Protocol Television (IPTV), where
upgrades can be designed in, allowing
controlled security updates to be pushed
to the system across the network.
Similarly, next-generation cable television
security is moving to renewable software.
Software-renewable systems through
methods such as proactive obfuscation [8]
are one means by which the military can
deploy security that is both robust and
affordable.

Example: Xbox
Microsoft’s Xbox game console is an
interesting public example of an intense
reverse engineering and hacking effort [9].

Microsoft had two goals in locking down
the Xbox: to prevent illegal copying of
their games, and to prevent subsidy fraud
by which a user could use the heavily sub-
sidized hardware for unauthorized appli-
cations or purposes. The Xbox was
designed to ensure that only signed appli-
cations could run, that only the original
Microsoft approved code could be used
on the Xbox, and that copied DVDs could
not be used.

Microsoft realized that not only did
the DVD authentication code need to be
protected against reverse engineering, but
the chain of trust needed to extend down
to the boot loader to ensure that only a
valid operating system could be loaded.
Microsoft left the original boot loader in
the ROM as a decoy that would entice
attackers to waste their time. The true
boot loader was then placed in the graph-
ic controller and written to be self-verify-
ing. The true boot loader contained the
obfuscated key used to decrypt and load
the kernel into memory. The kernel, in
turn, verified that only signed applications
were loaded and only original game DVDs
were being used.

The huge popularity and ready avail-
ability of the Xbox and copy-protected
games provided a large target for the hack-
er community. It took six months to final-
ly break the protection. When the real
boot loader was finally discovered and
reverse engineered, the chain of trust
came tumbling down. Copied DVDs and
other applications could be run on the
hardware. However, to replace the boot
loader required a special mod chip that
required cracking the Xbox cover and
voiding the warranty.

Nevertheless, a second attack was then
developed that exploited a buffer over-
flow, which meant no hardware modifica-
tions were necessary. Since code verifica-
tion only occurred at boot-up, arbitrary
code could be run independent of the sys-
tem-level security.

The Xbox reminds us what happens
when the chain of trust is broken and the
house of cards comes tumbling down. The
Xbox presented a challenging situation
because the system was designed to be self-
contained and autonomous – like many
weapons systems or autonomous vehicles –
and the user untrusted. Captured vehicles
or undetonated bombs present a very sim-
ilar type of threat, albeit infinitely more
dangerous in the military arena.

But Will the Military Do It
Differently?
Military systems can put more constraints

on the user than a commercial producer
like Microsoft can. One obvious improve-
ment would be to include a hardware root
of trust, either in a security chip such as a
Trusted Platform Module, or a removable
component like a smart card or dongle.
The theory behind this approach is that
the smart card can be removed or even
physically destroyed by a trusted user prior
to capture of the system.

The system must be designed to ensure
all the appropriate software is encrypted
and that a necessary secret lies in the
removable key. Without the key stored on
the smart card, the system cannot decrypt
and run software applications. The system
must still boot sufficiently to read the card,
but if it is not present, an attacker will not
be able to jeopardize the system.

But even this added level of protection
has limitations that expose the military to
potential security breaches. For example,
the system could still be reverse engi-
neered by a nation that legitimately pur-
chased it and has access to the entire sys-
tem. Without further precautions, the
technology’s soft, chewy center is
exposed.

The same vulnerabilities would be
exposed if the system were captured by an
adversary when still running, or if the
smart card were not removed, with serious
consequences of disclosure and a possible
weakening of other deployed systems.

A prime example is the U.S. Navy EP-
3E Aries II surveillance plane that made an
emergency landing on Hainan Island in
China in April 2001 after a collision with a
Chinese fighter jet. The plane was valued at
U.S. $80 million and was packed with
sophisticated eavesdropping equipment
[10]. Military experts were concerned that
Japan and the United States would have to
change their secret communication system,
at a cost of millions of dollars, as a result
of Chinese scrutiny of the top-secret
equipment [11]. Application security would
have seriously hampered efforts to reverse
engineer sensitive systems on board.

Missiles and bombs that do not
explode are also vulnerable to reverse-
engineering of weapons and guidance sys-
tems by adversaries. The United Nations
mine clearing officials stated that between
10 percent and 30 percent of the missiles
and bombs dropped on Afghanistan have
not exploded [12]. According to a DoD
briefing, a total of seven Tomahawk cruise
missiles went astray in the Saudi Desert
without exploding [13]. In Kosovo,
Yugoslavia, evidence of missiles and
bombs that had not exploded included a
U.S. $1.25 million High Speed Anti Radar
Missile on a highway and a Maverick anti-

tank missile that had apparently missed its
desired target and embedded itself in the
roadside verge [14].

Planning further defenses against
these scenarios without application securi-
ty exposes the difficulty of trying to patch
together highly specific defenses against
every eventuality. Would a special launch
sequence be required for missiles, loading
a decryption key into memory from a
removable smart card before launch? How
would field officers know if an
autonomous vehicle were downed and
how would they take action to defend the
system? Would sensors track its state so
that random access memory could be
cleared and the system shut down? These
approaches each bring operational scenar-
ios and key management issues into a bat-
tlefield environment with associated train-
ing, readiness, and the need for correct
execution. As keys proliferate, the insider
threat only further increases.

Application Security Provides
Defense in Depth
To be truly effective, there must not be a
soft chewy center, but hardened applica-
tions that are an active part of the chain of
trust. A chain that establishes real trust is
a chain mesh rather than a series of links.
The hardware authenticates the loader,
which authenticates the kernel, which
authenticates the application. The applica-
tion in turn authenticates the hardware,
loader, and kernel while it is running, pre-
venting one break at a low level from pro-
viding the keys to the castle. Application
security provides protection against insid-
ers even if system-level security is com-
promised. Reaction when tampering or an
attack is detected can be as varied as log-
ging, calling home, or an intentional destruc-
tive hostile response such as erasing hard
drives or damaging central processing
units.

Application security further increases
the effort required to break system-level
security because failure is not directly cor-
related to attacker actions. For example,
tampering detected in one part of the
software may result in subtle data errors
that only become obvious elsewhere, mak-
ing it difficult for a hacker to know where

the attack was discovered. Unlike the
perimeter tactics borrowed from network
security, this provides a logical and com-
plex form of defense in depth.

There are a number of application-
level security techniques available to
defend both source code and compiled
applications. Typically, the best strategy is
to combine multiple defenses in ways that
are complementary and protect not only
the application and data, but also each
other.

Application Security
Techniques
To understand application security tech-
niques, it is best to understand the follow-
ing traditional means by which software is
attacked.
• Analysis. Classic reverse engineering

and analysis of the software and pro-
tocols to identify vulnerabilities. This
can be static analysis when the code is
not running such as disassembly and
decompilation, or dynamic tracing of
the executing code using debuggers
and emulators.

• Tampering. Modifying the code and/
or data so that it performs according
to the attacker’s objectives rather than
as designed.

• Automation. The creation of scripts
or code to apply the tampering attack
to multiple copies of the application.
These are also known as class attacks
or global breaks.

Application security techniques are used
to prevent both static and dynamic analy-
sis, as well as static and dynamic tampering
to the software (see Table 1). This tech-
nology includes the following:
• Code obfuscation. Data flow and

control flow transformations to pre-
vent reverse engineering and tampering.

• White-box cryptography [15]. Spe-
cialized obfuscation techniques for
cryptographic algorithms that prevent
secret keys from appearing in memory
during cryptographic operations.

• Integrity verification. Robust on-
disk and in-memory verification to
detect static tampering of the entire
executable and dynamic tampering of
code.

• Anti-debug. Detection and preven-
tion of the use of debuggers and emu-
lators to prevent dynamic analysis.

• Code encryption. Just-in-time de-
cryption of code in memory to pre-
vent static reverse engineering and
tampering. Decompilers are ineffective
with these techniques.

• Diversity [16]. A random seed is typi-
cally used by the tools that implement
the software protection technology
such that a different random seed cre-
ates a structurally different result.
Diversity prevents automated or glob-
al attacks from being developed by
adversaries against the protection tech-
niques.
The first goal is to make static analysis

difficult, time-consuming, and/or expen-
sive. The obvious approach to prevent
static analysis is to encrypt the binary.
While there are techniques to extract these
decrypted executables from memory,
there are also source code techniques that
prevent static analysis such as control flow
flattening, which introduces pointer alias-
ing that can only be resolved at runtime.
In addition, there are specific decompila-
tion and disassembly prevention tech-
niques that target these tools. Note that
while very powerful disassembly tools
exist, most low-level code written in C or
C++ is very difficult to decompile with
only a few tools available. Software pro-
tection is about using multiple layers of
defense and all these techniques should be
considered.

Runtime analysis of a system can be
made very time-consuming by using anti-
debugger and anti-emulation techniques.
A range of techniques unto themselves,
these can be effective on targeted plat-
forms. The code can be tied to the plat-
form via node locking and loading of new
applications controlled by secure code
signing techniques. Advanced just-in-time
decryption (or self-modifying code) tech-
niques also raise the bar against dynamic
analysis. Authentication of components
on the machine and encryption of com-
munication channels, with protocol not
subject to replay attacks, also prevent
analysis. In addition, data flow transfor-
mation techniques can be used to hide and
randomize data values even when operat-
ed on within main memory. White-box
cryptography refers to specific crypto-
graphic implementations designed to pre-
vent key extraction even when the opera-
tion can be statically or dynamically
viewed by an attacker. Steganographic
techniques can also be used for key hiding.

Static tampering is prevented with
binary encryption techniques, as well as by

28 CROSSTALK The Journal of Defense Software Engineering October 2005

Software Security

Reverse
Engineering Attacks

Tampering Attacks

Static Dynamic Static Dynamic
Automated Attacks

Code Obfuscation Diversity
White-Box Cryptography 3 Diversity
Integrity Verification Diversity
Anti-Debug 3 Diversity
Code Encryption Diversity

Table 1: Application Security Techniques and the Types of Attack They Defend Against

3 3 3

3
 3 3

3 3

3

Table 1: Application Security Techniques and the Types of Attack They Defend Against

Application Security: Protecting the Soft Chewy Center

October 2005 www.stsc.hill.af.mil 29

introducing data dependencies in the code
to change an easy branch jamming attack
into tampering – increasing the effort
required and involving multiple changes to
the code. An important technique to pre-
vent tampering is code signing, but the
code signing mechanism itself will be sub-
ject to attack and so must also be suitably
hardened. Integrity verification of applica-
tions should be done statically (on-disk) as
well as in memory to prevent dynamic
tampering attacks.

Prevention of automated attacks is
best achieved by deploying code and data
diversity so that a successful attack will
only work for a subset of users. Diversity
of code is a result of most software pro-
tection techniques outlined above. It is
similar to having different keys (diversity
of data) for different users. Diversity of
code recognizes that attacks will be made
on the software in addition to the data.
Automated attacks are also mitigated by
software renewability, which can be made
low cost – if designed in upfront.
Conversely, with hardware-based security,
renewability is a major cost. Software can
be renewed selectively, proactively, or reac-
tively – depending on the strategy and the
attacks to the specific system.

Diversity is a prerequisite for successful
renewability; otherwise, attackers will per-
form differential analysis. This is a power-
ful attack used to quickly determine the
changes made to software upgrades and
shorten the time to successfully hack.

These application security techniques
are integral to the SPI. The SPI’s goals
include institutionalizing software protec-
tion as part of the application software life
cycle and developing user-friendly protec-
tion techniques. Institutionalized and easy-
to-use software protection techniques like
those described above provide an addition-
al layer of security that helps to ensure the
availability of critical assets and infrastruc-
ture while maintaining the strategic lead in
technologies critical to national defense.

Institutionalized application-level secu-
rity techniques can help assure that the
development environment is safe against
insider threats. For example, obfuscation
of source code and diversification of bina-
ries during the development process can
help prevent a production system from
being reverse engineered despite being
protected, because earlier prototypes were
not. Every version sent to the field for
testing can be protected distinctly from
every other version at low cost. This sort
of technique can be particularly important
for the development of complex systems
that involve a significant software engi-
neering factory. Innovations developed by

subgroups within the process can be hid-
den from participants elsewhere in the
product development cycle.

Conclusion
When developers build security directly
into their applications, they significantly
strengthen resistance to attacks, even on
open platforms and in hostile environ-
ments. While system-level security can be
effective to a point, it does not address all
the attack scenarios, especially the insider
attack. Rather than a chain of trust, appli-
cation-level security combines with net-
work security and operating system
integrity to form a chain mesh. COTS sys-
tems lower system development and
deployment costs while application securi-
ty maintains the protection needed in
today’s networked, technically advanced
warfare. Combined, they offer superior
value and flexibility in the quest for battle
readiness and operational success.

References
1. Hughes, Jeff, and Dr. Martin R. Stytz.

“Advancing Software Security – The
Software Protection Initiative.” 8th
Annual International Command and
Control Research and Technology
Symposium, Wright Patterson Air
Force Base, Ohio, 2003 <www.dod
ccrp.org/events/2003/8th_ICCRTS/
pdf/137.pdf>.

2. Trusted Computing Group. “Enabling
the Industry to Make Computing
More Secure.” Backgrounder Jan. 2005
<www.trustedcomputinggroup.org/
downloads/background_docs/TCG_
Backgrounder_revised_012605.pdf>.

3. Trusted Computing Group.
4. Main, A., and P.C. van Oorschot.

“Software Protection and Application
Security: Understanding the Battle-
ground.” International Course on
State of the Art and Evolution of
Computer Security and Industrial
Cryptography. Heverlee, Belgium, June
2003 <www.scs.carleton.ca/%7E
paulv/papers/softprot8a.pdf>.

5. van Oorschot, P.C. Revisiting Software
Protection. Proc. of 6th International
Information Security Conference,
2003:1-13. Bristol, U.K., 2003.
Springer-Verlag Lecture Notes in
Computer Science, Oct. 2003: 2851.

6. Trusted Computing Group.
7. Menezes, A.J, P.C. van Oorschot, and

S.A. Vanstone. Handbook of Applied
Cryptography. 5th ed. CRC Press,
1996.

8. Schneider, F. B., L. Zhou. Distributed
Trust: Supporting Fault Tolerance and
Attack Tolerance. Jan. 2004.

9. Huang, Andrew. Hacking the Xbox:
An Introduction to Reverse Engineer-
ing. No Starch Press, July 2003: 288.

10. Pan, Philip P. “U.S. Team Arrives in
China to Examine Plane.” The Wash-
ington Post 1 May 2001.

11. Chandler, Clay. “No Deal Reached On
Plane: U.S., China Agree Only on
More Talks.” The Washington Post 20
Apr. 2001.

12. Ryan, Julie. “3,800 Civilians Killed:
Unwelcome News of the ‘War on
Terror’.” Dallas Peace Times Feb.-Mar.
2002 <www.dallaspeacecenter.org/
dpt0202/civilian_deaths.htm>.

13. The Command Post. 29 Mar. 2003
<www.command-post.org/2_archives/
2003_03_29. html>.

14. Beaver, Paul. “World: Europe Analysis:
How Yugoslavia Hid its Tanks.” BBC
News 25 June 1999 <http://news.
bbc.co.uk/1/hi/world/europe/3779
43.stm>.

15. Chow, S., P. Eisen, H. Johnson, and
P.C. van Oorschot. White-Box Crypt-
ography and an AES Implementation.
Proc. of the 9th International Work-
shop on Selected Areas in Cryptog-
raphy, 2002: 250-270. Springer-Verlag
Lecture Notes in Computer Science
2003: 2595, 2003.

16. Anckaert, Bertrand, Bjorn De Sutter,
and Koen De Bosschere. Software
Piracy Prevention Through Diversity.
Proc. of the 4th ACM Workshop on
Digital Rights Management.

About the Author

Alec Main is chief tech-
nology officer at Cloak-
ware. He has been in-
volved in the design and
implementation of nu-
merous software security

systems for PCs, mobile devices, and set-
top boxes, and has pioneered Cloak-
ware’s software protection technology.
Main is a regular speaker at conferences
on the topic of software protection and
has a degree in electrical engineering.

Cloakware
8320 Old Courthouse RD
STE 201
Vienna,VA 22182
Phone: (866) 465-4517
Fax: (703) 760-7899
E-mail:alec.main@cloakware.com

30 CROSSTALK The Journal of Defense Software Engineering October 2005

Departments

SecurityFocus
www.securityfocus.com
SecurityFocus is a comprehensive and trusted source of security
information on the Internet. SecurityFocus provides objective,
timely, and comprehensive security information to all members
of the security community, from end-users and network admin-
istrators to security consultants, information technology man-
agers, chief information officers, and chief security officers.

Home PC Firewall Guide
www.firewallguide.com/spyware.htm
This posting of an anti-spyware guide on Home PC Firewall
Guide provides links to help you fight spyware. Spyware has a
range of meanings including keystroke-loggers, malware, brows-
er parasites, unsolicited commercial software, scumware, home
page hijackers, dialers, and Trojan horses. Microsoft Windows
and Internet Explorer are the targets for most of these attackers.
Home PC Firewall Guide provides easy access to basic informa-
tion, and independent, third-party reviews of Internet security
and privacy products for home, telecommuter, and small office
and/or home office end-users.

KRC Anti-Spyware Tutorial
www.greyknight17.com/spyware.htm
This tutorial walks you through the basics of understanding
what type of spyware attack you may encounter to instructions
for removing spyware and various software assistance tools to
spyware prevention. Its step-by-step tutorial instructs you on
how to install and use common free spyware removal and pro-
tection tools. It also includes numerous links to these tools and
industry information and definitions to aid in understanding.
The main Web site, Kevin’s Resource Center, offers help with
computer-related issues. It includes links to sites that have tech
support, free software downloads, and other resources.

WatchGuard
www.watchguard.com/infocenter/editorial/15860.asp
This posting at WatchGuard is a good basic article on spyware
remediation, including a list of anti-spyware tools and links to
more in-depth information. The main Web site also features
white papers and case studies for review.

US-CERT
www.us-cert.gov
The U.S. Computer Emergency Readiness Team (US-CERT®)
is a partnership between the Department of Homeland Security
and the public and private sectors. US-CERT was established in
2003 to protect the nation’s Internet infrastructure by coordi-
nating defense against and response to cyber attacks. US-CERT
is responsible for the following:
• Analyzing and reducing cyber threats and vulnerabilities.
• Disseminating cyber threat warning information.
• Coordinating incident response activities.

US-CERT interacts with federal agencies, industry, the
research community, state and local governments, and others to
disseminate reasoned and actionable cyber security information to
the public. Information is available from the US-CERT Web site
and through mailing lists. US-CERT also provides a way for citi-
zens, businesses, and other institutions to communicate and coor-
dinate directly with the U.S. government about cyber security.

Department of Homeland Security
www.dhs.gov/dhspublic
The DHS is the government’s 15th cabinet-level agency, con-
solidating 22 previously disparate agencies under one unified
roof. The DHS has three primary missions: Prevent terrorist
attacks within the United States, reduce America’s vulnerabili-
ty to terrorism, and minimize the damage from potential
attacks and natural disasters. The department’s first priority is
to protect the nation against further terrorist attacks.
Component agencies will analyze threats and intelligence,
guard U.S. borders and airports, protect critical infrastructure,
and coordinate the response of the nation for future emergen-
cies. Besides providing a better-coordinated defense of the
homeland, DHS is also dedicated to protecting the rights of
American citizens and enhancing public services such as natu-
ral disaster assistance and citizenship services by dedicating
offices to these important missions.

Software Technology Support Center
www.stsc.hill.af.mil
The Software Technology Support Center (STSC) is an Air Force
organization established to help other U.S. government organi-
zations identify, evaluate, and adopt technologies to improve the
quality of their software products, efficiency in producing them,
and to accurately predict the cost and schedule of their delivery.
The STSC specializes in systems engineering and development,
software quality and test, project management, cost estimation,
and software acquisition management.

Institute of Electrical and Electronics
Engineers
www.ieee.org
The Institute of Electrical and Electronics Engineers (IEEE)
promotes the engineering process of creating, developing, inte-
grating, sharing, and applying knowledge about electrical and
information technologies and sciences. IEEE provides technical
publications, conferences, career development assistance, finan-
cial services and more.

The Data & Analysis Center for Software
http://iac.dtic.mil/dacs/
The Data & Analysis Center for Software (DACS) is a
Department of Defense (DoD) Information Analysis Center. The
DACS is the DoD Software Information Clearinghouse for state-
of-the-art software information providing technical support for
the software community. The DACS offers a wide variety of tech-
nical services designed to support the development, testing, vali-
dation, and transitioning of software engineering technology.

Best Practices Clearinghouse
http://fc-md.umd.edu/bpch/
The Department of Defense (DoD) Best Practices Clearing-
house was established to improve DoD’s acquisition of software-
intensive systems by helping programs select and implement
proven acquisition, development, and systems engineering prac-
tices appropriate to their individual programmatic needs. It will
support component improvement initiatives by enabling acqui-
sition organizations to create and institutionalize effective sys-
tem acquisition processes and maintain well-trained, experi-
enced personnel.

WEB SITES

BACKTALK

October 2005 www.stsc.hill.af.mil 31

From: Hiram Rextall, TLA Security Head for Information Technology
To: All TLA Company Personnel
Subject: Network Passwords

As you know, restricting access to information is a cornerstone of corporate TLA culture. Unauthorized or unwanted access to the
TLA company network by a person or persons unknown can have a consequence or consequences unknown. Your password is your
passport to the world of corporate knowledge. Your password must be protected at all times, at all costs, and at all points of ingress
or egress. Therefore, effective immediately, the following rules regarding passwords are in place and will be strictly enforced:

1. Passwords must be between 23 and 37 alphanumeric characters. (As 23 and 37 are prime numbers, their use as bounds should
confuse decryption techniques.)

2. Passwords must contain at least three members from each of the following four groups: uppercase letters, lowercase letters, num-
bers, and special characters.

3. The password may not contain more than five consecutive members of any of the four groups listed in No. 2.
4. White space characters (space, tab, etc.) are allowed, provided a network administrator visually verifies them.
5. Because all computer data is ultimately stored in binary format (a combination of ones and zeros), the numbers 1 and 0 may not

be used in a password.
6. Because the letter l looks like the number 1 and the letter O looks like the number 0, you cannot use l or O either. Similarly, you

cannot use an exclamation point (!) or vertical bar (|).
7. Lowercase letter o may be used provided it is not next to a number.
8. The password may not contain any word in the English language, including I (uppercase only) and a (either case). (Company per-

sonnel operating abroad: This word restriction applies in the local language as well.)
9. The password may not contain your name, your employee number, your street address, your mother’s maiden name, your pet’s

name, your first grade teacher, or your supposedly secret drag queen/biker momma name. (The sorts of people who try to break
into networks know that last one.)

10. Passwords are to be changed every 24 hours. Because the IT department cares, you do not have to change your password every
time you log in. However, should you log out without having changed your password and need to log in again within the same
24-hour period, you will have to submit a request to the IT department to have a temporary password issued. This will probably
take 24 hours to process. Days are considered to begin at 0000 Zulu hours.

11. The password cycle is synchronized with each 24-hour cycle. If you fail to log in during a 24-hour period, it will be necessary to
create and use passwords covering the missed period. For example, upon return from a two-week vacation it will necessary to
update your password 14 times.

12. Passwords are to be memorized. They are not to be recorded using any media: paper, computer file, clay, wood, iron, sand, wax,
Styrofoam, food, or animal parts.

13. Passwords may be reused after one year.
14. You may not use any other user’s current or past passwords; the one-year rule applies here.

It may seem difficult to come up with passwords that meet these requirements and are mnemonically friendly. Please keep in mind
that you only need to remember each password for a single day. It may help you to associate something familiar to assist your mem-
ory with your password. For example, “The quick brown fox jumped over the lazy dog” could be used to associate to the password
Dz23+8uVC**ojy~xiMn4_Q?. (Note: This password has already been taken.)

While mathematicians are still crunching the numbers, it is calculated that there are over 1014 passwords possible. However, TLA man-
agement is concerned that we may run out of passwords. To address this, IT is already working on a three-part login system (TriHard)
that will make passwords obsolete. The three TriHard components include:

• Biometric fingerprint scan
• Simultaneous spring-loaded needle prick for blood sample and DNA comparison
• Optical retinal scan

A TriHard prototype involving its last two components is in alpha testing. Volunteers have been hard to come by for some reason.
IT personnel will be visiting your work areas soon seeking assistance. Keep an eye open for them.

“Remember, you can’t do it without IT.”
– Hiram Rextall

— Dan Knauer
TLA – A Three Letter Acronym Corporation

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	From the Sponsor
	Policies, News, and Updates
	Engineering Security Into the
Software Development Life Cycle
	Creating a Software Assurance Body of Knowledge

	Software Security
	Designing for Disaster:
Building Survivable Information Systems
	Sixteen Standards-Based Practices
for Safety and Security
	The Information Technology Security Arms Race
	The MILS Architecture for a
Secure Global Information Grid
	Application Security: Protecting the Soft Chewy Center

	Coming Events

	More Online From CrossTalk
	Letters to the Editor
	Call for Articles
	Web Sites

	BackTalk

	Back Cover

